Skip to main content
Log in

Effects of Subchronic Administration of Metrifonate on Cholinergic Neurotransmission in Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of subchronic oral administration of metrifonate, a long-acting cholinesterase (ChE) inhibitor, on cholinergic neurotransmission were assessed in young adult male Wistar rats. Animals were treated twice daily with metrifonate. In a pilot study testing a 100 mg/kg dose of metrifonate for up to 14 days, ChE activity was found to steadily decrease to reach maximum inhibition levels of about 55%, 80% and 35% in brain, erythrocytes and plasma. Steady-state inhibition levels were attained by the 10th day of treatment. When metrifonate-treatment was discontinued, ChE activity in plasma returned to control levels within another day, while erythrocyte and brain ChE activity took more than 2 weeks to recover. In subsequent dose-response studies, metrifonate treatment was given for 3 and 4.5 weeks at doses of 0, 12.5, 25, 50, and 100 mg/kg, to different groups of animals, respectively. Correlation analysis indicted that brain ChE inhibition was more accurately reflected by erythrocyte than by plasma ChE inhibition, although all effects were highly correlated. The changes in ChE activity were not paralleled by changes in other parameters of the cholinergic neurotransmission, such as acetylcholine synthesis rate or acetylcholine receptor binding. It is therefore concluded that repeated administration of metrifonate to rats induces a long-lasting inhibition of ChE activity in a dose-related and predictable manner, which is neither subject to desensitization nor paralleled by counterregulatory downregulation of muscarinic or nicotinic receptor binding sites in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Perry, E. K., Tomlinson, E., Blessed, G., Bergmann, K., Gibson, P. H., and Perry, R. H. 1978. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. J. Med. 42:1457–1459.

    Google Scholar 

  2. Bierer, L. M., Haroutunian, V., Gabriel, S., Knott, P. J., Carlin, L. S., Purohit, D. P., Perl, D. P., Schmeidler, J., Kanof, P., and Davis, K. L. 1995. Neurochemical correlates of dementia severity in Alzheimer's disease: Relative importance of the cholinergic deficits. J. Neurochem. 64:749–760.

    Google Scholar 

  3. Reisine, T., Yamamura, H. I., Bird, E. D., Spokes, E., and Enna, S. J. 1978. Pre-and postsynaptic neurochemical alterations in Alzheimer's disease. Brain Res. 159:477–481.

    Google Scholar 

  4. Zubenko, G. S., Moossey, J., Martinez, A. J., Rao, G. R., Kopp, U., and Hanin, I. 1989. A brain regional analysis of morphologic and cholinergic abnormalities in Alzheimer's disease. Arch. Neurol. 46:634–638.

    Google Scholar 

  5. Mash, D. C., Flynn, D. D., and Potter, L. T. 1985. Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer's disease and experimental cholinergic denervation. Science 228:1115–1117.

    Google Scholar 

  6. Whitehouse, P. J., Martino, A. M., Wagster, M. V., Price, D. L., Mayeux, R., Atack, J. R., and Kellar, K. J. 1988. Reductions in 3H-nicotinic acetylcholine binding in Alzheimer's disease and Parkinson's disease—an autoradiographic study. Neurology 38:720–723.

    Google Scholar 

  7. Giacobini, E., DeSarno, P., Clark, B., and McIlhany, M. 1989. The cholinergic receptor system of the human brain. Neurochemical and pharmacological aspects in aging and Alzheimer's disease. In A. Nordberg (Ed.), Progress in Brain Research, Vol. 79, Elsevier, Amsterdam, pp. 335–343.

    Google Scholar 

  8. Bowen, D. M., Benton, J. S., Spillane, J. A., Smith, C. C. T., and Allen, S. J. 1983. Choline acetyltransferase activity and histopathology of frontal cortex from biopsies of demented patients. J. Neurol. Sci. 57:181–212.

    Google Scholar 

  9. Giacobini, E. 1987. Modulation of brain acetylcholine levels with cholinesterase inhibitors as a treatment of Alzheimer's disease. Keio J. Med. 36:381–391.

    Google Scholar 

  10. Becker, R. E., and Giacobini, E. 1988. Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological, and therapeutic aspects. Drug Dev. Res. 12:163–195.

    Google Scholar 

  11. Jaen, J. C., and Davis, R. E. 1993. Cholinergic therapies for Alzheimer's disease: acetylcholinesterase inhibitors of current clinical interest. Curr. Opin. Invest. Drugs 2:363–377.

    Google Scholar 

  12. Weinstock, M. 1995. The pharmacotherapy of Alzheimer's disease based on the cholinergic hypothesis: an update. Neurodegeneration 4:349–356.

    Google Scholar 

  13. Giacobini, E. 1991. The second generation of cholinesterase inhibitors: pharmacological aspects. In: Cholinergic Basis for Alzheimer Therapy (R. Becker and E. Giacobini, eds.) Birkhäuser, Boston, pp 247–262.

    Google Scholar 

  14. Becker, R. E., Colliver, J., Elble, R., Feldman, E., Giacobini, E., Kumar, V., Markwell, S., Moriearty, P., Parks, R., Shillcutt, S. D., Unni, L., Vicari, S., Womack, C., and Zec, R. F. 1990. Effects of metrifonate, a long-acting cholinesterase inhibitor, in Alzheimer disease: Report of an open trial. Drug Dev. Res. 19:425–434.

    Google Scholar 

  15. Bieber, F., Creed Pettigrew, L., Mas, J., Schmitt, F., and Wermeling, D. 1995. Results of a phase lia clinical study trial with metrifonate. Psychopharmacol. Bull. 31:554.

    Google Scholar 

  16. Cummings, J., Bieber, F., Mas, J., Orazem, J., and Gulanski, B. 1996. Metrifonate in Alzheimer's Disease—results of a dose-finding study. Neurobiol. Aging 17(Suppl.):S153–S154.

    Google Scholar 

  17. Nordgren, I., Bergström, M., Holmstedt, B., and Sandoz, M. 1978. Transformation and action of metrifonate. Arch. Toxicol. 41:31–41.

    Google Scholar 

  18. Hallak, M., and Giacobini, E. 1987. A comparison of the effects of two inhibitors on brain cholinesterase. Neuropharmacology 26:521–530.

    Google Scholar 

  19. Hallak, M., and Giacobini, E. 1989. Physostigmine, tacrine and metrifonate: the effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacology 28:199–206.

    Google Scholar 

  20. Hinz, V. C., Grewig, S., and Schmidt, B. H. 1996. Metrifonate and dichlorvos: Effects of a single oral administration on cholinesterase activity in rat brain and blood. Neurochem. Res. 21:339–345.

    Google Scholar 

  21. DuBois, K. P., and Cotter, G. J. 1955. Studies on the toxicity and mechanism of action of dipterex. Arch. Industr. Health 11:53–60.

    Google Scholar 

  22. Reiner, E., and Peština, R. 1979. Regeneration of cholinesterase activities in humans and rats after inhibition of 0,0–dimethyl 2,2–dichlorovinyl phosphate. Toxicol. Appl. Pharmacol. 49:451–454.

    Google Scholar 

  23. Ellman, G. L., Courtney, K. D., Andres, V. Jr., and Featherstone, R. M. 1961. A new, rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  25. Dixon, W. J. 1959. Analyses of extreme values. Annals of Mathematical Statistics 21:488–506.

    Google Scholar 

  26. Dixon, W. J. 1959. Ratios involving extreme values. Annals of Mathematical Statistics 22:68–78.

    Google Scholar 

  27. Holmstedt, B., Nordgren, I., Sandoz, M., and Sundwall, A. 1978. Metrifonate. Summary of toxicological and pharmacological information available. Arch. Toxicol. 41:3–29.

    Google Scholar 

  28. Jewsbury, J. M. 1981. Metrifonate in schistosomiasis-therapy and prophylaxis. Acta Pharmacol. Toxicol. 49:123–130.

    Google Scholar 

  29. Davi0s, A. 1993. Antischistosomial drugs and clinical practice. Human Schistosomiasis, 367–404.

  30. Hinz, V. C., Grewig, S., and Schmidt, B. H. 1996. Metrifonate induces cholinesterase inhibition exclusively via slow release of dichlorvos. Neurochem. Res. 21:331–337.

    Google Scholar 

  31. Mori, F., Cuadra, G., and Giacobini, E. 1995. Metrifonate effects on acetylcholine and biogenic amines in rat cortex. Neurochem. Res. 20:1081–1088.

    Google Scholar 

  32. Björklund, M., Jäkälä, P., Schmidt, B., Riekkinen, M., Koivisto, E., and Riekkinen, P. Jr. 1996. An indirect cholinesterase inhibitor, metrifonate, increases neocortical EEG arousal in rats. NeuroReport 7:1097–1101.

    Google Scholar 

  33. Bassant, M. H., Jazat-Poindessous, F., and Lamour, Y. 1996. Effects of metrifonate, a cholinesterase inhibitor, on local cerebral glucose utilization in young and aged rats. J. Cerebral Blood Flow Metab. 16:1014–1025.

    Google Scholar 

  34. Blokland, A., Hinz, V., and Schmidt, B. H. 1995. Effects of metrifonate and tacrine in the spatial Morris task and modified Irwin test: evaluation of the efficacy/safety profile in rats. Drug Dev. Res. 36:166–179.

    Google Scholar 

  35. van der Staay, F. J., Hinz, V. C., and Schmidt, B. H. 1996. Effects of metrifonate on escape and avoidance learning in young and aged rats. Behavioural Pharmacol. 7:56–64.

    Google Scholar 

  36. van der Staay, F. J., Hinz, V. C., and Schmidt, B. H. 1996. Effects of metrifonate, its transformation product dichlorvos, and other organophosphorus and reference cholinesterase inhibitors on Morris water-escape behavior in young-adult rats. J. Pharmacol. Exp. Ther. 278:697–708.

    Google Scholar 

  37. Riekkinen, P. Jr., Schmidt, B. H., Stefanski, R., Kuitunen, J., and Riekkinen, M. 1996. Metrifonate improves spatial navigation and avoidance behavior in scopolamine-treated, medial septal-lesioned and aged rats. Eur. J. Pharmacol. 309:121–130.

    Google Scholar 

  38. Kronforst-Collins, M. A., Moriearty, P. L., Ralphs, M., Becker, R. E., Schmidt, B. H., Thompson, L. T., and Disterhoft, J. F. 1997. Metrifonate treatment enhances acquisition of eye-blink conditioning in aging rabbits. Pharmacol. Biochem. Behav. 56:103–110.

    Google Scholar 

  39. Hinz, V. C., Blokland, A., van der Staay, F. J., Gebert, I., Schuurman, T., and Schmidt, B. H. 1996. Receptor interaction profile and CNS general pharmacology of metrifonate and its transformation product dichlorvos in rodents. Drug Dev. Res. 38:31–42.

    Google Scholar 

  40. Pope, C. N., Chakrabort, T. K., Chapman, M. L., and Farrar, J. D. 1992. Long-term neurochemical and behavioral effects induced by acute chlorpyrifos treatment. Pharmacol. Biochem. Behavior 42:251–256.

    Google Scholar 

  41. Bushnell, P. J., Padilla, S. S., Ward, T., Pope, C. N., and Olszyk, V. B. 1991. Behavioral and neurochemical changes in rats dosed repeatedly with diisopropylfluorophosphate. J. Pharmacol. Exp. Ther. 256:741–750.

    Google Scholar 

  42. McDonald, B. E., Costa, L. G., and Murphy, S. D. 1988. Spatial memory impairments and central muscarinic receptor loss following prolonged treatment with organophosphate. Toxicol. Letters 40:47–56.

    Google Scholar 

  43. Katz, L. S., and Marquis, J. K. 1989. Modulation of central muscarinic receptor binding in vitro by ultralow levels of the organophosphate paraoxon. Toxicol. Appl. Pharmacol. 101:114–123.

    Google Scholar 

  44. Clement, J. G. 1991. Effect of a single dose of acetylcholinesterase inhibitor on oxotremorine-and nicotine-induced hypothermia in mice. Pharmacol. Biochem. Behav. 39:929–934.

    Google Scholar 

  45. Silveira, C. L., Eldefrawi, A. T., and Eldefrawi, M. E. 1990. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases. Toxicol. Appl. Pharmacol. 103:474–481.

    Google Scholar 

  46. Sterri, S. H. 1981. Factors modifying the toxicity of organophosphorous compounds including dichlorvos. Acta Pharmacol. Toxicol. 49:67–71.

    Google Scholar 

  47. Wenthold, R. J., Mahler, H. R., and Moore, W. J. 1974. The half life of acetylcholinesterase in mature rat brain. J. Neurochem. 22:941–943.

    Google Scholar 

  48. Yaksh, T. L., Filbert, M. G., Harris, L. W., and Yamamura, H. I. 1975. Acetylcholinesterase turnover in brain, cerebrospinal fluid and plasma. J. Neurochem. 25:853–860.

    Google Scholar 

  49. Nordgren, I., Lundgren, G., Puu, G., and Holmstedt, B. 1984. Stereoselectivity of enzymes involved in toxicity and detoxification of soman. Arch. Toxicol. 55:70–75.

    Google Scholar 

  50. Arthur, B. W., and Cassida, J. E. 1957. Mode of action of insecticides. Metabolism and selectivity of 0,0–dimethyl 2,2,2–trichloro-1–hydroxyethyl phosphonate and its acetyl and vinyl derivatives. J. Agric. Food Chem. 5:186–192.

    Google Scholar 

  51. Blair, D., Hoadley, E. C., and Hutson, D. H. 1975. The distribution of dichlorvos in the tissues of mammals after its inhalation or intravenous administration. Toxicol. Appl. Pharmacol. 31:243–253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinz, V., Kolb, J. & Schmidt, B.H. Effects of Subchronic Administration of Metrifonate on Cholinergic Neurotransmission in Rats. Neurochem Res 23, 931–938 (1998). https://doi.org/10.1023/A:1021072119502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021072119502

Navigation