Skip to main content
Log in

Interaction of Amyloid Beta-Protein with Anionic Phospholipids: Possible Involvement of Lys28 and C-Terminus Aliphatic Amino Acids

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Fibrillar amyloid beta-protein (Aβ) is the major protein of amyloid plaques in the brains of patients with Alzheimer's disease (AD). The mechanism by which normally produced soluble Aβ gets fibrillized in AD is not clear. We studied the effect of neutral, zwitterionic, and anionic lipids on the fibrillization of Aβ 1-40. We report here that acidic phospholipids such as phosphatidic acid, phosphatidylserine, phosphatidylinositol (PI), PI 4-phosphate, PI 4,5-P2 and cardiolipin can increase the fibrillization of Aβ, while the neutral lipids (diacylglycerol, cholesterol, cerebrosides), zwitterionic lipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelin) and anionic lipids lacking phosphate groups (sulfatides, gangliosides) do not affect Aβ fibrillization. Aβ was found to increase the fluorescence of 1-acyl-2-[12-[ (7-nitro-2-1, 3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-glycero-3-phosphate (NBD-PA) in a concentration-dependent manner, while no change was observed with 1-acyl-2-[12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-glycero-3-phosphoethanolamine (NBD-PE). Under similar conditions, other proteins such as apolipoprotein E, gelsolin and polyglutamic acid did not interact with NBD-PA. The order of interaction of amyloid β-peptides with NBD-PA was Aβ 1-43 = Aβ 1-42 = Aβ 17-42 > Aβ 1-40 = Aβ 17-40. Other Aβ peptides such as Aβ 1-11, Aβ 1-16, Aβ 1-28, Aβ 1-38, Aβ 12-28, Aβ 22-35, Aβ 25-35, and Aβ 31-35 did not increase the NBD-PA fluorescence. These results suggest that phosphate groups, fatty acids, and aliphatic amino acids at the C-terminus end of Aβ 1-40/Aβ 1-42 are essential for the interaction of Aβ with anionic phospholipids, while hydrophilic Aβ segment from 1-16 amino acids does not participate in this interaction. Since positively charged amino acids in Aβ are necessary for the interaction with negatively charged phosphate groups of phospholipids, it is suggested that Lys28 of Aβ may provide anchor for the phosphate groups of lipids, while aliphatic amino acids (Val-Val-Ile-Ala) at the C-terminus of Aβ interact with fatty acids of phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wisniewski, H. M., Sinatra, R. S., Iqbal, K., and Grundke-Iqbal, I., 1981. Neurofibrillary and synaptic pathology in the aged brain, Vol. 1, pages 105–142, in Johnson, J. E. Jr. (ed.), Aging and Cell Structure, Plenum Publishing Corporation, New York.

    Google Scholar 

  2. Masters, C. L., Simms, G., Weinman, N. A. Multhaup, G., Mc-Donald, B. L., and Beyreuther, K. 1985. Amyloid plaque core protein in Alzheimer' disease and Down' Syndrome, Proc. Natl. Acad. Sci. USA. 82:4245–4249.

    Google Scholar 

  3. Miller, D. L., Papayannopoules, I. A., Styles, J., Bobin, S. A., Lin, Y. Y., Biemann, L. K., and Iqbal, K. 1993. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer' disease, Arch. Biochem. Biophys. 301:41–52.

    Google Scholar 

  4. Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Zurcher-Neely, H. A., Heinreikson, R. L., Ball, M. J., and Greenberg, B. D. 1993. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer' disease, J. Biol. Chem. 268:3072–3083.

    Google Scholar 

  5. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. 1994. Visualization of A??42 (43) and A??(40) in senile plaques with end-specific A??monoclonals: Evidence that an initially deposited species is A??42 (43), Neuron 13:45–53.

    Google Scholar 

  6. Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., and Beyreuther, K. 1991. Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer' disease, J. Mol. Biol. 218:149–163.

    Google Scholar 

  7. Lorenzo, A., and Yankner, B. A. 1994. ?-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red, Proc. Natl. Acad. Sci. U.S.A. 91:12243–12247.

    Google Scholar 

  8. Iversen, L. L., Mortishire-Smith, R. J., Pollack, S. J., and Shearman, M. S. 1995. The toxicity in vitro of ?-amyloid protein, Biochem. J. 311:1–16.

    Google Scholar 

  9. Jarrett, J. T., and Lansbury, P. T., Jr. 1993. Seeding “One-Dimensional Crystallization” of amyloid: A pathogenic mechanism in Alzheimer' disease and Scrapie, Cell 73:1055–1058.

    Google Scholar 

  10. Bush, A. I., Pettingell, W. H., Multhaup, G., Paradis, M., Vonsaltel, J., Gusella, J. F. Beyreuther, K., Masters, C. L., and Tenzi, R. E. 1994. Rapid induction of Alzheimer' A??amyloid formation by zinc, Science 265:1464–1467.

    Google Scholar 

  11. Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E. 1993. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of ?-amyloid peptide, J. Neurochem. 61:1171–1174.

    Google Scholar 

  12. Miatto, O., Gonzalez, G., Bounanno, F., and Growdon, J. H. 1986. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer' disease, Can. J. Neurosci. 13: 535–539.

    Google Scholar 

  13. Stokes, C. E., and Hawthorne, J. N. 1987. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains, J. Neurochem. 48:1018–1021.

    Google Scholar 

  14. Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. 1988. 31P nuclear magnetic resonance study of the brain in Alzheimer' disease, J. Neuropathol. Exp. Neurol. 47:235–248.

    Google Scholar 

  15. Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membrane defect in Alzheimer' disease brain, Proc. Natl. Acad. Sci. USA 89:1671–1675.

    Google Scholar 

  16. Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. 1995. Disease and anatomic specificity of ethanolamine plasmalogen deficiency of Alzheimer' disease brain, Brain Res. 698:223–226.

    Google Scholar 

  17. Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. 1995. Neural membrane phospholipids in Alzheimer' disease. Neurochem. Res. 20:1329–1333.

    Google Scholar 

  18. Farooqui, A. A., Rapoport, S. I., and Horrocks, L. A. 1997. Membrane phospholipid alterations in Alzheimer' disease: Deficiency of ethanolamine plasmalogen, Neurochem. Res. 22:523–527.

    Google Scholar 

  19. Guan, Z., Wang, Y., Cairns, N. J., Lantos, P. L., Dallner, G., and Sindelar, P. J. 1999. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease, J. Neuropathol. Exp. Neurol. 58:740–747.

    Google Scholar 

  20. Chia, L. S., Thompson, J. E., and Moscarello, M. A. 1984. X-ray diffraction evidence for myelin disorder in brain from human with Alzheimer' disease, Biochim. Biophys. Acta 775:308–312.

    Google Scholar 

  21. Zubenko, G. S. 1986. Hippocampal membrane alteration in Alzheimer' disease, Brain Res. 385:115–121.

    Google Scholar 

  22. Dawson, R. M. C., and Eichberg, J. 1965. Diphosphoinositide and triphosphoinositide in animal tissues: extraction, estimation and changes post mortem. Biochem. J. 96:634–643.

    Google Scholar 

  23. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons, Proc. Natl. Acad. Sci. USA 95:6460–6464.

    Google Scholar 

  24. Perichon, R., Moser, A. B., Wallace, W. C., Cunningham, S. C., Roth, G. S., and Moser, H. W. 1998. Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion, Biochem. Biophys. Res. Commun. 248:57–61.

    Google Scholar 

  25. McLaurin, J., Franklin, T., Chakrabarty, A., and Fraser, P. E. 1998. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest, J. Mol. Biol. 278:183–194.

    Google Scholar 

  26. Chauhan, A., Chauhan, V. P. S., Brockerhoff, H. and Wisniewski, H. M. Effect of amyloid beta-protein on membrane properties. Pages 431–439, in Corain, B., Iqbal, K. Nicolini, M., Winblad, B., Wisniewski, H., and Zatta, P. (eds.), Alzheimer' disease: Advances in Clinical and Basic Research, John Wiley & Sons, Inc., New York.

  27. Muller, W. E., Eckert, G. P., Scheuer, K., Cairns, N. J., Maras, A., and Gattaz, W. F. 1998. Effects of beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain: High potencies of A??1-42 and A??1-43, Amyloid 5:10–15.

    Google Scholar 

  28. Chauhan, A., Chauhan, V. P. S., Singh, S. S., Brockerhoff, H., and Wisniewski, H. M. 1994. Amyloid ?-protein induces membrane fusion. Structure-function studies, Neurobiol. Aging 15:555.

    Google Scholar 

  29. Pillot, T., Goethals, M., Vanloo, B., Talussot, C., Brasseur, R., Vandekerckhove, J., Rosseneu, M., and Lins, L. 1996. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide, J. Biol. Chem. 271:28757–28765.

    Google Scholar 

  30. Terzi, E., Holzemann, G., and Seelig, J. 1997. Interaction of Alzheimer beta-amyloid peptide (1-40) with lipid membranes, Biochemistry 36:14845–14852.

    Google Scholar 

  31. LeVine, III, H. 1993. Thioflavin T interaction with synthetic Alzheimer' disease ?-amyloid peptides: Detection of amyloid aggregation in solution, Protein Sci. 2:404–410.

    Google Scholar 

  32. Chauhan, A., Chauhan, V. P. S., Wegiel, J., and Wisniewski, H. M. 1996. Impact of normal and heat-inactivated serum on in vitro aggregation and fibrillization of synthetic amyloid betaprotein, Alzheimer' Res. 2:243–248.

    Google Scholar 

  33. Chauhan, V. P. S., and Brockerhoff, H. 1984. Ca (phosphatidate)2 can traverse liposomal bilayers, Life Sci. 35:1395–1399.

    Google Scholar 

  34. Halverson, K., Fraser, P. E., Kirschner, D. A., and Lansbury, P. T., 1990. Molecular determinants of amyloid deposition in Alzheimer' disease: conformational studies of synthetic ?-protein fragments, Biochemistry 29:2639–2644.

    Google Scholar 

  35. Lansbury, P. T., Costa, P. R., Griffiths, J. M., Simon, E. J., Auger, M., Halverosn, K. J., Kocisko, D. A., Hendsch, Z. S., Ashburn, T. T., Spencers, R. G. S., Tidor, B., and Griffin, R. G. 1995. Structural model for the ?-amyloid fibril based on interstrand alignment of an anti-parallel-sheet comprising a C-terminal peptide, Nature Struct. Biol. 2:990–997.

    Google Scholar 

  36. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. 1996. Detection of nuclei, and quantitation of rate constants on the nucleation and growth of amyloid ?-protein fibrils, Proc. Natl. Acad. Sci. 93:1125–1129.

    Google Scholar 

  37. Jain, S. K. 1984. The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes, J. Biol. Chem. 259:3391–3394.

    Google Scholar 

  38. Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie R. C., Laface, D. M., and Green, D. R. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by over expression of Bcl 2 and Abl, J. Exp. Med. 182:1545–1556.

    Google Scholar 

  39. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. 1994. Hydrogen peroxide mediates amyloid ?-protein toxicity, Cell 77:817–827.

    Google Scholar 

  40. Smith, M. A., Hirai, K., Pappolla, M. A., Harris, P. L. R., Siedlak, S. L., Tabaton, M., and Perry, G. 1998. Amyloid-? deposition in Alzheimer transgenic mice is associated with oxidative stress, J. Neurochem. 70:2212–2215.

    Google Scholar 

  41. Cotman, C. W., and Anderson, A. J. 1995. A potential role for apoptosis in neurodegeneration and Alzheimer' disease, Mol. Neurobiol. 10:19–45.

    Google Scholar 

  42. LeBlanc, A. 1997. Apoptosis and Alzheimer' disease. Pages 57–71, in Wasco, W. and Tanzi, R. E. (eds.), Molecular Mechanism of Dementia, Human Press, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, A., Ray, I. & Chauhan, V.P.S. Interaction of Amyloid Beta-Protein with Anionic Phospholipids: Possible Involvement of Lys28 and C-Terminus Aliphatic Amino Acids. Neurochem Res 25, 423–429 (2000). https://doi.org/10.1023/A:1007509608440

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007509608440

Navigation