Skip to main content
Log in

MR Spectroscopy: A Powerful Tool for Investigating Brain Function and Neurological Diseases

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopy (MRS) has attracted much attention in recent years and has become an important tool to study in vivo particular biochemical aspects of brain disorders. Since the proton is the most sensitive stable nucleus for MRS, and since almost all metabolites contain hydrogen atoms, investigation by in vivo 1H MRS provides chemical information on tissue metabolites, thus enabling a non-invasive assessment of changes in brain metabolism underlying several brain diseases. In this review a brief description of the basic principles of MRS is given. Moreover, we provide some explanations on the techniques and technical problems related to the use of 1H MRS in vivo including water suppression, localization, editing, quantitation and interpretation of 1H spectra. Finally, we discuss the more recent advancement in three major areas of neurological diseases: brain tumors, multiple sclerosis, and inborn errors of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ackerman, J. J., Grove, T. H., Wong, G. G., Gadian, D. G., and Radda, G. K. 1980. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283:167-170.

    Google Scholar 

  2. Prichard, J. W. 1999. New NMR measurements in epilepsy. General introduction, functional magnetic resonance imaging, magnetic resonance spectroscopy, and diffusion-weighted imaging. Adv. Neurol. 79:917-924.

    Google Scholar 

  3. Leary, S. M., Davie, C. A., Parker, G. J., Stevenson, V. L., Wang, L., Barker, G. J., Miller, D. H., and Thompson, A. J. 1999. 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J. Neurol. 246:1023-1026.

    Google Scholar 

  4. Kaibara, T., Tyson, R. L., and Sutherland, G. R. 1998. Human cerebral neoplasms studied using MR spectroscopy: a review. Biochem. Cell Biol. 76:477-486.

    Google Scholar 

  5. Marcus, C. D., Taylor-Robinson, S. D., Sargentoni, J., Ainsworth, J. G., Frize, G., Easterbrook, P. J., Shaunak, S., and Bryant, D. J. 1998. 1H MR spectroscopy of the brain in HIV-1-seropositive subjects: evidence for diffuse metabolic abnormalities. Metab. Brain Dis. 13:123-136.

    Google Scholar 

  6. Ricci, P. E., Jr. 1998. Proton MR spectroscopy in ischemic stroke and other vascular disorders. Neuroimaging Clin. N. Am. 8:881-900.

    Google Scholar 

  7. Hoang, T. Q., Bluml, S., Dubowitz, D. J., Moats, R., Kopyov, O., Jacques, D., and Ross, B. D. 1998. Quantitative protondecoupled 31P MRS and 1H MRS in the evaluation of Huntington's and Parkinson's diseases. Neurology 50:1033-1040.

    Google Scholar 

  8. Wang, Z. J. and Zimmerman, R. A. 1998. Proton MR spectroscopy of pediatric brain metabolic disorders. Neuroimaging Clin. N. Am. 8:781-807.

    Google Scholar 

  9. Morris, P. G. 1999. Magnetic resonance imaging and magnetic resonance spectroscopy assessment of brain function in experimental animals and man. J. Psychopharmacol. 13:330-336.

    Google Scholar 

  10. Aureli, T., Di Cocco, M. E., Calvani, M., and Conti, F. 1997. The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res. 765:218-27.

    Google Scholar 

  11. Gadian, D. G. 1995. NMR and its Application to Living Systems, Oxford University Press, Oxford, 2nd edition.

    Google Scholar 

  12. Andrew, E. R., Bydder, G., Griffiths, J., Iles, R., and Styles, P. 1990. Clinical Magnetic Resonance: Imaging and Spectroscopy, John Wiley and Sons, Chichester.

    Google Scholar 

  13. Radda, G. K. and Taylor, D. J. 1985. Applications of nuclear magnetic resonance spectroscopy in pathology. Int. Rev. Exp. Pathol. 27:1-58.

    Google Scholar 

  14. Frahm, J., Merboldt, K. D., and Hanicke, W. 1987. Localized proton spectroscopy using stimulated echoes. J. Magn. Reson. 72:502-508.

    Google Scholar 

  15. Moonen, C. T., von Kienlin, M., van Zijl, P. C., Cohen, J., Gillen, J., Daly, P., and Wolf, G. 1989. Comparison of singleshot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed. 2:201-208.

    Google Scholar 

  16. Haase, A., Frahm, J., Hänicke, W., and Matthaei, D. 1985. 1H NMR chemical shift selective (CHESS) imaging. Phys. Med. Biol. 30:341-344.

    Google Scholar 

  17. Doddrell, D. D., Galloway, G. J., Brooks, W. M., Bulsing, J. M., Field, J. C., Irving, M. G., and Baddeley, H. 1986. The utilization of two frequency-shifted sinc pulses for performing volume-selected in vivo NMR spectroscopy. Magn. Reson. Med. 3:970-975.

    Google Scholar 

  18. Frahm, J., Bruhn, H., Gyngell, M. L., Merboldt, K. D., Hänicke, W., and Sauter, R. 1989. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn. Reson. Med. 9:79-93.

    Google Scholar 

  19. Moonen, C. T. and van Zijl, P. C. 1990. Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM). J. Magn. Reson. 88:28-41.

    Google Scholar 

  20. Sotak, C. H. 1991. Multiple quantum NMR spectroscopy methods for measuring the apparent self-diffusion coefficient of in vivo lactic acid. NMR Biomed. 4:70-72.

    Google Scholar 

  21. Freeman, D. M. and Hurd, R. E. 1992. Metabolites specific methods using double quantum coherence transfer spectroscopy. NMR Basic Principles and Progress 27:199-222.

    Google Scholar 

  22. Frahm, J., Bruhn, H., Gyngell, M. L., Merboldt, K. D., Hänicke, W., and Sauter, R. 1989. Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn. Reson. Med. 11:47-63.

    Google Scholar 

  23. Sotak, C. H., Freeman, D. M., and Hurd, R. E. 1988. The unequivocal determination of in vivo lactic acid using two-dimensional double-quantum coherence-spectroscopy. J. Magn. Reson. 78:355-361.

    Google Scholar 

  24. Brereton, I. M., Rose, S. E., Galloway, G. J., Moxon, L. N., and Doddrell, D. M. 1990. In vivo volume-selective metabolite editing via correlated z-order. Magn. Reson. Med. 16:460-469.

    Google Scholar 

  25. Thomas, M. A., Hetherington, H. P., Meyerhof, D. J., and Tweigh, D. B. 1991. Localised double-quantum-filtered 1H NMR spectroscopy. J. Magn. Reson. 93:485-496.

    Google Scholar 

  26. Hafner, H. P., Radü, E., and Seelig, J. 1990. Two-volume acquisition in image-guided proton spectroscopy. Magn. Reson. Med. 15:135-141.

    Google Scholar 

  27. Müller, S., Hafner H. P., and Beckman, N. 1989. Simultaneous multivolume spectroscopy (SIMUVOSP) using local techniques. NMR Biomed. 2:209-215.

    Google Scholar 

  28. Schirmer, T. and Auer, D. P. 2000. On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain. NMR Biomed. 13:28-36.

    Google Scholar 

  29. Duc, C. O., Weber, O. M., Trabesinger, A. H., Meier, D., and Boesiger, P. 1998. Quantitative 1H MRS of the human brain in vivo based on the stimulation phantom calibration strategy. Magn. Reson. Med. 39:491-496.

    Google Scholar 

  30. de Beer, R., Barbiroli, B., Gobbi, G., Knijn, A., Kugel, H., Langenberger, K. W., Tkac, I., and Topp, S. 1998. Absolute metabolite quantification by in vivo NMR spectroscopy: III. Multicentre 1H MRS of the human brain addressed by one and the same dataanalysis protocol. Magn. Reson. Imaging. 16:1107-1111.

    Google Scholar 

  31. de Beer, R. and van Ormondt, D. 1992. Analysis of NMR data using time domain fitting procedures. NMR Basic Principles and Progress 26:201-248.

    Google Scholar 

  32. Tate, A. R., Crabb, S., Griffiths, J. R., Howells, S. L., Mazucco, R. A., Rodrigues, L. M., and Watson, D. 1996. Lipid metabolite peaks in pattern recognition analysis of tumor in vivo MR spectra. Anticancer Res. 16:1575-1579.

    Google Scholar 

  33. Giuliani, A., Capuani, G., Miccheli, A., Aureli, T., Ramacci, M. T., and Conti, F. 1991. Multivariate data analysis in biochemistry: a new integrative approach to metabolic control in brain aging. Cell. Mol. Biol. 37:631-638.

    Google Scholar 

  34. Giuliani, A., Capuani, G., Aureli, T., Miccheli, A., Manetti, C., and Conti, F. 1993. Multivariate data analysis as applied to NMR results: a window on biological complexity. J. Magn. Reson. Biol. Med. 1:5-12.

    Google Scholar 

  35. Behar, K. L., den Hollander, J. A., Stromski, M. E., Ogino, T., Shulman, R. G., Petroff, O. A. C., and Prichard, J. W. 1983. High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc. Natl. Acad. Sci. USA 80:4945-4948.

    Google Scholar 

  36. Peeling, J. and Sutherland, G. 1992. High-resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magn. Reson. Med. 24:123-136.

    Google Scholar 

  37. Kinoshita, Y., Kajiwara, H., Yokota, A., and Koga, Y. 1994. Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35:606-614.

    Google Scholar 

  38. Burlina, A. P., Künnecke, B., Erhard, P., and Seelig, J. 1995. One-and two-dimensional 1H NMR spectroscopy of human brain tumors. Proc. Fed. Eur. Biochem. Soc. 275: Abstract.

  39. Negendank, W. 1992. Studies of human tumors by MRS: a review. NMR Biomed. 5:303-324.

    Google Scholar 

  40. Urenjak, J., Williams, S. R., Gadian, D. G., and Noble, M. 1993. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J. Neurosci. 13:981-989.

    Google Scholar 

  41. Florian, C. L., Preece, N. E., Bhakoo, K. K., Williams, S. R., and Noble, M. 1996. Characteristic metabolic profiles revealed by 1H NMR spectroscopy for three types of human brain and nervous system tumors. NMR Biomed. 8:253-264.

    Google Scholar 

  42. Kinoshita, Y. and Yokota, A. 1997. Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed. 10:2-12.

    Google Scholar 

  43. Shiino, A., Nakasu, S., Matsuda, M., Handa, J., Morikawa, S., and Inubushi, T. 1999. Noninvasive evaluation of the malignant potential of intracranial meningiomas performed using proton magnetic resonance spectroscopy. J. Neurosurg. 91:928-934.

    Google Scholar 

  44. Hagberg, G., Burlina, A. P., Mader, I., Roser, W., Radue, E. W., and Seelig, J. 1995. In vivo proton MR spectroscopy of human gliomas: definition of metabolic coordinates for multidimensional classification. Magn. Reson. Med. 34:242-252.

    Google Scholar 

  45. Preul, M. C., Caramanos, Z., Collins, D. L., Villemure, J.-G., Leblanc, R., Olivier, A., Pokrupa, R., and Arnold, D. L. 1996. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Med. 2:323-325.

    Google Scholar 

  46. Usenius, J.-P., Tuohimetsä, S., Vainio, P., Ala-Korpela, M., Hiltunen, Y., and Kauppinen, R. A. 1996. Automated classification of human brain tumors by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes. NeuroReport 7:1597-1600.

    Google Scholar 

  47. Maxwell, R. J., Martinez-Pérez, I., Cerdan, S., Cabañas, M. E., Arus, C., Moreno, A., Capdevilla, A., Ferrer, E., Bartomeus, F., Apariccio, A., Conesa, G., Roda, J. M., Carceller, F., Pascual, J. M., Howells, S. L., Mazucco, R., and Griffiths, J. R. 1998. Pattern recognition analysis of 1H NMR spectra from perchloric acid extracts of human brain tumor biopsies. Magn. Reson. Med. 39:869-877.

    Google Scholar 

  48. Hagberg, G. 1998. From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed. 11:148-156.

    Google Scholar 

  49. Arnold, D. L., Matthews, P. M., Francis, G., and Antel, J. 1990. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn. Reson. Med. 14:154-159.

    Google Scholar 

  50. Arnold, D. L., Riess, G. T., Matthews, P. M., Francis, G. S., Collins, D. L., Wolfson, C., and Antel, J. P. 1994. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann. Neurol. 36:76-82.

    Google Scholar 

  51. Davie, C. A., Hawkins, C. P., Barker, G. J., Brennan, A., Tofts, P. S., Miller, D. H., and McDonald, W. I. 1994. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49-58.

    Google Scholar 

  52. Davies, S E. C., Newcombe, J., Williams, S. R., McDonald, W. I., and Clark, J. B. 1995. High resolution proton spectroscopy of multiple sclerosis lesions. J. Neurochem. 64:742-748.

    Google Scholar 

  53. Trapp, B. D., Peterson, J., Ransohoff, R. M., Rudick, R., Mörk, S., and Bö, L. 1998. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338:278-285.

    Google Scholar 

  54. Gonen, O., Catalaa, I., Babb, J. S., Ge, Y., Mannon, L. J., Kolson, D. L., and Grossman, R. I. 2000. Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology 54:15-19.

    Google Scholar 

  55. Bhakoo, K. K. and Pearce, D. 2000. In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J. Neurochem. 74:254-262.

    Google Scholar 

  56. Burlina, A. P., Ferrari, V., Facci, L., Skaper, S. D., and Burlina, A. B. 1997. Mast cells contain large quantities of secretagogue-sensitive N-acetylaspartate. J. Neurochem. 69:1314-1317.

    Google Scholar 

  57. Olsson, Y. 1974. Mast cells in plaques of multiple sclerosis. Acta Neurol. Scand. 50:611-618.

    Google Scholar 

  58. Krüger, P. G., BØ , L., Myhr, K. M., Karlsen, A. E., Taule, A., Nyland, H. I., and MØ rk, S. 1990. Mast cells and multiple sclerosis: a light and electron microscopic study of mast cells in multiple sclerosis emphasizing staining procedures. Acta Neurol. Scand. 81:31-36.

    Google Scholar 

  59. Grodd, W., Krägeloh-Mann, I., Petersen, D., Trefz, F. K., and Harzer, K. 1990. In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan's disease) by proton spectroscopy. Lancet 336:437-438.

    Google Scholar 

  60. Burlina, A. P., Corazza, A., Ferrari, V., Erhard, P., Künnecke, B., Seelig, J., and Burlina, A. B. 1994. Detection of increased urinary N-acetylaspartylglutamate in Canavan disease. Eur. J. Pediatr. 153:538-539.

    Google Scholar 

  61. Burlina, A. P., Ferrari, V., Divry, P., Gradowska, W., Jakobs, C., Bennett, M. J., Sewell, A. C., Dionisi-Vici, C., and Burlina, A. B. 1999. N-acetylaspartylglutamate in Canavan disease: an adverse effector? Eur. J. Pediatr. 158:406-409.

    Google Scholar 

  62. Novotny, E. J., Jr., Avison, M. J., Herschkowitz, N., Petroff, O. A. C., Prichard, J. W., Seashore, M. R., and Rothman, D. L. 1995. In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy. Pediatr. Res. 37:244-249.

    Google Scholar 

  63. Möller, H. E., Weglage, J., Wiedermann, D., and Ullrich, K. 1998. Blood-brain barrier phenylalanine transport and individual vulnerability in phenylketonuria. J. Cereb. Blood Flow Metab. 18:1184-1191.

    Google Scholar 

  64. Stöckler, S., Holzbach, U., Hanefeld, F., Marquardt, I., Helms, G., Requart, M., Hänicke, W., and Frahm, J. 1994. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr. Res. 36:409-413.

    Google Scholar 

  65. van der Knaap, M. S., Barth, P. G., GabreË ls, F. J. M., Franzoni, E., Begeer, J. H., Stroink, H., Rotteveel, J. J., and Valk, J. 1997. A new leukoencephalopathy with vanishing white matter. Neurology 48:845-855.

    Google Scholar 

  66. Hanefeld, F., Holzbach, U., Kruse, B., Wilichowski, E., Christen, H.-J., and Frahm, J. 1993. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 24:244-248.

    Google Scholar 

  67. Schiffmann, R., Moller, J. R., Trapp, B. D., Shih, H. H.-L., Farrer, R. G., Katz, D. A., Alger, J. R., Parker, C. C., Hauer, P. E., Kaneski, C. R., Heiss, J. D., Kaye, E. M., Quarles, R. H., Brady, R. O., and Barton, N. W. 1994. Childhood ataxia with diffuse central nervous system hypomyelination. Ann. Neurol. 35:331-340.

    Google Scholar 

  68. van der Knaap, M. S., Wevers, R. A., Kure, S., GabreË ls, F. J. M., Verhoeven, N. M., van Raaij-Selten, B., and Jaeken, J. 1999. Increased cerebrospinal fluid glycine: a biochemical marker for a leukoencephalopathy with vanishing white matter. J. Child Neurol. 14:728-731.

    Google Scholar 

  69. Moolenaar, S. H., Poggi-Bach, J., Engelke, U. F. H., Corstiaensen, J. M. B., Heerschap, A., De Jong, J. G. N., Binzak, B. A., Vockley, J., and Wevers, R. A. 1999. Defect in dimethylglycine dehydrogenase, a new inborn eeror of metabolism: NMR spectroscopy study. Clin. Chem. 45:459-464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burlina, A.P., Aureli, T., Bracco, F. et al. MR Spectroscopy: A Powerful Tool for Investigating Brain Function and Neurological Diseases. Neurochem Res 25, 1365–1372 (2000). https://doi.org/10.1023/A:1007660632520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007660632520

Navigation