Skip to main content
Log in

On the classification of discrete modes in lossy planar waveguides: the modal analysis revisited

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In integrated-optical components such as integrated optical detectors or semiconductor light amplifiers, multilayer dielectric waveguiding structures occur in which some layers may be strongly lossy or may have gain. In such structures, the classification of the guided modes may become impossible. This paper reviews the modal analysis in which modes are only considered in connection with their possible excitation with a current line-source. Starting from the lossless situation, the analysis is extended to the lossy case and the details of the classification problem are investigated numerically. It was found that the validity of a unique classification is always limited. For that reason it is investigated, whether the classification problem might be due to the fact that in the time-harmonic formulation, the physical requirement of causality has been lost. To test this hypothesis, wave propagation is investigated along lossy waveguides in the timeLaplace-transform domain and using Lerch's causality theorem. It surprisingly turns out that in the time-Laplace-transform domain, the discrete part of the longitudinal spectrum does not exist, so that the test of the hypothesis is not conclusive. The classification problem of guided modes in strongly lossy waveguides is still an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Naishadham and L. B. Felsen, IEEE Trans. Ant. Prop. 41 (1993) 304.

    Article  ADS  Google Scholar 

  2. C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).

    Google Scholar 

  3. H. Blok, Theory of Electromagnetic Waveguides, Part 1, Lecture notes course et01–34, Faculty of Electrical Engineering. TU Delft, 1994–1995 (available on request).

  4. C. A. Van Duin, J. Boersma and F. W. Sluijter, Wave Motion 8 (1986) 175.

    Article  MATH  Google Scholar 

  5. H. Weyl, Math. Ann. 68 (1910) 220.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Vassallo, J. Opt. Soc. Am. 69 (1979) 311.

    ADS  Google Scholar 

  7. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, Piscataway, NJ, 1995) Section 2.7.2

    MATH  Google Scholar 

  8. M. J. N. Van Stralen, Internal Report Electromagnetic Research, TU Delft Et/EM 1992–03 (1992) (available on request).

  9. R. F. Carson and T. E. Batchman, Appl. Phys. Lett. 29 (1990) 2769.

    Google Scholar 

  10. M. A. Duguay, Y. Kokubun, T. L. Joch and L. Pfeiffer, Appl. Opt. 49 (1986) 13.

    Google Scholar 

  11. T. Baba and Y. Kokubun, Appl. Opt. 29 (1990) 2781.

    ADS  Google Scholar 

  12. T. D. Visser, H. Blok and D. Lenstra, IEEE J. Quantum Electron. 31 (1995) 1803.

    Article  ADS  Google Scholar 

  13. M. J. N. Van stralen and H. Blok, Internal Report Electromagnetic Research, TU Delft Et/EM 1995–18 (1995) (available on request).

  14. H. J. W. M. Hoekstra, Opt. Quantum Electron., 29 (1997) 157.

    Article  Google Scholar 

  15. H. Blok, J. M. Van Splunter and H. G. Janssen, Appl. Sci. Res. 41 (1984) 223.

    Article  Google Scholar 

  16. N. Dunford and J. T. Schwartz, Linear Operators Part II (Inter science, New York, 1963) Ch. 13.

    MATH  Google Scholar 

  17. R. E. Smith, S. N. Houde-walter and G. W. Forbes, IEEE J. Quantum Electron. 28 (1992) 1520.

    Article  ADS  Google Scholar 

  18. Yi-Fan Li and J. W. Y. Lit, J. Opt. Soc. Am. A 4 (1987) 671.

    Article  ADS  Google Scholar 

  19. S. Ruschin, G. Griffel, A. Hardy and N. Croitoru, J. Opt. Soc. Am. A 3 (1986) 116.

    ADS  Google Scholar 

  20. A. Hardy, E. Kapon and A. Katzir, J. Opt. Soc. Am. 71 (1981) 1283.

    ADS  Google Scholar 

  21. K. Postma, Master's thesis, Laboratory of Optics, Faculty of Applied Physics, TU Delft (November 1990).

  22. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic Press, New York, 1972).

    Google Scholar 

  23. J. Arnbak, Electron. Lett. 5 (1969) 41.

    Google Scholar 

  24. P. Benech and D. Khalil, Opt. Comm. 118 (1995) 220.

    Article  ADS  Google Scholar 

  25. R. E. Smith and S. N. Houde-Walter, J. Lightwave Technol. 11 (1993) 1760.

    Article  ADS  Google Scholar 

  26. S. L. Lee, Y. Chung, L. A. Coldren and N. Dagli, IEEE J. Quantum Electron. 31 (1995) 1790.

    Article  ADS  Google Scholar 

  27. C. W. Hsue and T. Tamir, J. Opt. Soc. Am. A 1 (1984) 923.

    ADS  Google Scholar 

  28. F. Y. Kou and T. Tamir, J. Opt. Soc. Am. A 3 (1986) 417.

    ADS  Google Scholar 

  29. C. I. G. Hsu, R. F. Harrington, J. R. Mautz and T. K. Sarkar, IEEE Trans. Microwave Theory Technol. 39 (1991) 346.

    Article  Google Scholar 

  30. J. J. Burke, Appl. Opt. 9 (1970) 2444.

    Article  ADS  Google Scholar 

  31. V. Shah and T. Tamir, Opt. Commun. 37 (1981) 383.

    Article  ADS  Google Scholar 

  32. R. B. Evans, J. Acoust. Soc. Am. 92 (1992) 2024.

    Article  ADS  Google Scholar 

  33. T. K. Lim and J. W. Y. Lit, Opt. Commun. 26 (1978) 36.

    Article  ADS  Google Scholar 

  34. H. J. M. Bastiaansen, N. H. G. Baken and H. Blok, IEEE Trans. Microwave Theory Technol. 40 (1992) 1918.

    Article  Google Scholar 

  35. B. K. Singaraju, D. V. Giri and C. E. Baum, Mathematics Note 42 (Air Force Weapons Laboratory, Albuquerque, NM, 1976).

    Google Scholar 

  36. J. F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall. Englewood Cliffs, NJ, 1964) Ch. 10.

    MATH  Google Scholar 

  37. K. Y. Huang, Internal Report Electromagnetic Research, TU Delft Et/EM 1994–17 (1994) (available on request).

  38. H. M. De ruiter, Appl. Opt. 20 (1981) 731.

    ADS  Google Scholar 

  39. M. A. Naimark, Linear Differential Operators, Part 1 (Frederich Ungar, New York, 1967) p. 40.

    MATH  Google Scholar 

  40. K. F. I. Haak, Internal Report Electromagnetic Research, TU Delft Et/EM 1992–28 (1992) (available on request).

  41. P. Henrici, Applied and Computational Complex Analysis, Vol. 2 (John Wiley, New York, 1977) p. 206.

    MATH  Google Scholar 

  42. D. V. Widder, The Laplace Transform (Princeton University Press, Princeton, NJ, 1946) p. 63.

    MATH  Google Scholar 

  43. J. P. Schouten, Operatorenrechnung (Springer-Verlag, Berlin, 1961) p. 101.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stralen, M.J.N.V., Haak, K.F.I. & Blok, H. On the classification of discrete modes in lossy planar waveguides: the modal analysis revisited. Optical and Quantum Electronics 29, 243–262 (1997). https://doi.org/10.1023/A:1018562307611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018562307611

Keywords

Navigation