Skip to main content
Log in

The influence of sulfur on adherence of Al2O3 grown on Fe-Cr-Al alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Recently a new theory was proposed to explain the effect that reactive elements have on oxide adherence. Based on data obtained on Ni-Cr-Al-Y material, this theory stated that trace quantities of sulfur in the alloy degrade adherence by weakening the metal-Al2O3 bond. The work presented here extends this concept to Fe-Cr-Al alloys by examining Al2O3 adherence on foil samples with various bulk sulfur levels obtained using high-temperature vacuum anneals. Results show that long-time vacuum anneals dramatically increase the adherence of the subsequently grown aluminum oxide, concurrent with removal of sulfur from the matrix. This evidence shows that the Al2O3-metal bond is intrinsically strong without the presence of reactive elements such as Y or rare earths in the alloy. Sulfur in the alloy, and not void formation, was found responsible for oxide spalling. In addition, voids were eliminated by reducing the sulfur concentration near the oxide-metal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Whittle and J. Stringer,Philos. Trans. R. Soc. Lond. Ser. A 295, 309–329 (1980).

    Google Scholar 

  2. H. Hindam and D. P. Whittle,Oxid. Met. 18(6), 245–285 (1982).

    Google Scholar 

  3. G. C. Wood and F. H. Stott,High Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, Texas, 1983), Vol. 6, pp. 227–250.

    Google Scholar 

  4. J. Stringer,Met. Rev. 11, 113–128 (1966).

    Google Scholar 

  5. J. K. Tien and F. S. Pettit,Met. Trans. 3, 1587–1599 (1972).

    Google Scholar 

  6. B. Lustman,Trans. TMS-AIME,188, 995–996 (1950).

    Google Scholar 

  7. E. J. Feiten,J. Electrochem. Soc. 108, 490–495 (1961).

    Google Scholar 

  8. C. S. Wukusick and J. F. Collins,Mat. Res. Stand. 4, 637–646 (1964).

    Google Scholar 

  9. H. Pfeiffer,Werkst. Korros. 8, 574–579 (1957).

    Google Scholar 

  10. J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136–1142 (1967).

    Google Scholar 

  11. J. M. Francis and J. A. Jutson,Corros. Sci. 8, 445–449 (1968).

    Google Scholar 

  12. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10(3), 163–187 (1976).

    Google Scholar 

  13. J. E. McDonald and J. G. Eberhart,Trans. TMS-AIME 233, 512–517 (1965).

    Google Scholar 

  14. J. L. Smialek and R. Browning,NASA Technical Memorandum 87168 (1985).

  15. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein,Met. Trans. 16A, 1164–1166 (1985).

    Google Scholar 

  16. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein,Met. Trans. 17A, 923–932 (1986).

    Google Scholar 

  17. R. P. Elliott,Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965), pp. 308, 575, 798, 799.

    Google Scholar 

  18. W. G. Moflatt,Handbook of Binary Phase Diagrams (General Electric Co., Corporate Research and Development Center, Schenectady, New York, 1984).

    Google Scholar 

  19. JANAF Thermochemical Tables Second Edition, D. R. Stull and H. Prophet, project directors (National Standard Reference Data Service, National Bureau of Standards, 37, June 1971).

  20. K. C. Mills,Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworth, London, 1974). pp. 62. 69–70. 206–209, 406–409, 677–679, 752, 794–795.

    Google Scholar 

  21. I. Barin, O. Knacke, and O. Kubaschewski,Thermochemical Properties of Inorganic Substances, Supplement (Springer-Verlag, Berlin, 1977), pp. 153, 349, 816.

    Google Scholar 

  22. R. L. Montgomery,U.S. Bureau of Mines, Reports of Investigations,5468, pp. 1–23 (1959).

    Google Scholar 

  23. M. W. Evans, InChemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, L. L. Quill, ed. 1st ed. (McGraw-Hill, New York, 1950), pp. 312–320.

    Google Scholar 

  24. L. Brewer, L. A. Bromley, P. W. Gilles, and N. L. Lofgren, InChemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, L. L. Quill, ed., 1st ed. (McGraw-Hill, New York, 1950), pp. 40–59.

    Google Scholar 

  25. E. G. King and W. W. Weller,U.S. Bureau of Mines, Reports of Investigations, No. 5485, pp. 1–5 (1959).

    Google Scholar 

  26. K. A. Gschneidner and N. Kippenham,Thermochemistry of the Rare Earth Carbides, Nitrides and Sulfides for Steelmaking (Rare Earth Information Center, Institute for Atomic Research, Iowa State University, Ames Iowa, 1972), pp. 18, 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigler, D.R. The influence of sulfur on adherence of Al2O3 grown on Fe-Cr-Al alloys. Oxid Met 29, 23–43 (1988). https://doi.org/10.1007/BF00656348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656348

Key words

Navigation