Skip to main content
Log in

Sulfidation behavior of Fe-27Mn-(0-17.3)Mo(a/o) alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Iron-base alloys containing ca. 27 a/o (atomic percent) manganese and up to 17.3 a/o molybdenum were sulfidized in H2/H2S gases of 4 Pa sulfur partial pressure at temperatures of 700–1000° C. Three-layered scales developed on all the molybdenum-containing alloys, and an internal sulfidation zone was observed in most cases. The overall scaling process and individual layer growth all followed parabolic kinetics. The outer and intermediate layers comprised Fe(Mn)S and Mn(Fe)S, respectively. Sulfidation rates varied with the morphology and constitution of the inner layer. The reaction product FexMo6S8−z, which was restricted to the inner layer, is permeable to sulfur, iron and manganese, but not molybdenum.For high-molybdenum levels, the overall scaling rate decreased, as a result of the slow diffusion of iron in FexMo6S8−z. For low-molybdenum levels, this beneficial effect is small and outweighed by the formation of an inner two-phase layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Danielewski and S. Mrowec,Solid State Ionics 17, 29 (1985).

    Google Scholar 

  2. M. Danielewski and S. Mrowec,Solid State Ionics 17, 41 (1985).

    Google Scholar 

  3. H. Rau,J. Phys. Chem. Solids 39, 339 (1978).

    Google Scholar 

  4. W. H. Cheung and D. J. Young,Oxid. Met. 36, 15 (1991).

    Google Scholar 

  5. H. Buscail and J. P. Larpin,Oxid. Met. 30, 273 (1988).

    Google Scholar 

  6. W. Znamirowski, F. Gesmundo, S. Mrowec, M. Danielewski, K. Godlewski, and F. Viant,Oxid. Met. 35, 175 (1991).

    Google Scholar 

  7. B. S. Lee and R. Rapp,J. Electrochem. Soc. 131, 2998 (1984).

    Google Scholar 

  8. K. Fueki, H. Ishibashi, and T. Mukaibo,J. Electrochem. Soc. 30, E-23 (1962).

    Google Scholar 

  9. G. Southwell and D. J. Young,Oxid. Met. 34, 161 (1990).

    Google Scholar 

  10. K. Nishida, T. Narita, T. Tan, and G. Osasaki,Oxid. Met. 14, 65 (1980).

    Google Scholar 

  11. P. Papaiacovou, H.-P. Schmidt, H. Erhart, and H. J. Grabke,Werkst. Korros. 38, 498 (1987).

    Google Scholar 

  12. R. V. Carter, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 341 (1989).

    Google Scholar 

  13. F. A. Elrefaie and W. W. Smeltzer,Werkst. Korros. 38, 493 (1987).

    Google Scholar 

  14. D. J. Young, W. W. Smeltzer, and J. S. Kirkaldy,Oxid. Met. 7, 149 (1973).

    Google Scholar 

  15. M. F. Chen and D. L. Douglass,Oxid. Met. 32, 185 (1989).

    Google Scholar 

  16. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 34, 123 (1990).

    Google Scholar 

  17. M. F. Chen and D. L. Douglass,Oxid. Met. 33, 103 (1990).

    Google Scholar 

  18. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 33, 425 (1990).

    Google Scholar 

  19. G. Wang,PhD dissertation, University of California, Los Angeles p. 34. (1990).

    Google Scholar 

  20. K. Ishida, K. Shibuya, and T. Nishizawa,J. Jpn. Inst. Met. 37, 1305 (1973).

    Google Scholar 

  21. O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry (Pergamon Press, Oxford, 1979), pp. 380–381.

    Google Scholar 

  22. B. de B. Darwent and R. Roberts,Proc. R. Soc. London Ser. A216, 344 (1953).

    Google Scholar 

  23. C. D. Holland and R. G. Anthony,Fundamentals of Chemical Reaction Engineering (Prentice-Hall, Englewood Cliffs, NJ, 1979).

    Google Scholar 

  24. H. Wada, M. Onoda, H. Nozaki, and I. Kawada,J. Less-Common Met. 113, 53 (1985).

    Google Scholar 

  25. D. J. Young,Rev. High-Temp. Mater. IV, 299 (1980).

    Google Scholar 

  26. M. Marezio, P. D. Dernier, J. P. Remeika, E. Corenzwit, and B. T. Matthias,Mater. Res. Bull. 8, 657 (1973).

    Google Scholar 

  27. D. Yvon,Solid State Commun. 25, 327 (1978).

    Google Scholar 

  28. Ø. Fischer,Appl. Phys. 16, 1 (1978).

    Google Scholar 

  29. S. R. Shatynski,Oxid. Met. 11, 307 (1977).

    Google Scholar 

  30. M. Hillert and M. Waldenstrom,Scand. J. Metall. 6, 211 (1977).

    Google Scholar 

  31. G. J. Yurek and H. Schmalzried,Ber. Bunsenges. Phys. Chem. 78, 1379 (1974);79, 255 (1975).

    Google Scholar 

  32. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988), p. 266.

    Google Scholar 

  33. G. V. Raynor and V. G. Rivlin,Phase Equilibria in Iron Ternary Alloys (The Institute of Metals, London, 1988), p. 354.

    Google Scholar 

  34. C. Wagner,Corros. Sci. 8, 889 (1968).

    Google Scholar 

  35. W. W. Smeltzer and D. P. Whittle,J. Electrochem. Soc. 125, 1116 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Young, D.J. & Blairs, S. Sulfidation behavior of Fe-27Mn-(0-17.3)Mo(a/o) alloys. Oxid Met 40, 245–274 (1993). https://doi.org/10.1007/BF00664493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00664493

Key words

Navigation