Skip to main content
Log in

High-temperature-sulfidation behavior of Fe-Mo-Mn-Al alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The sulfidation behavior of multiphase, iron-based alloys containing up to 24 a/o molybdenum, up to 16.3 a/o manganese, and up to 24 a/o aluminum was examined in flowing H 2 /H 2 S gases, corresponding to a sulfur partial pressure of 4 Pa, at 800° C. An accelerated sulfidation rate was almost invariably observed on the quaternary alloys, but slow linear kinetics were found for Fe-22Mo-17Al. This behavior is due to the different products of the preferentially-attacked ferrite phase. If FeAl2S4 formed over the ferrite phase, the sulfur-incorporation rate into the scale was slowed down and accordingly the alloys had excellent protection, whereas formation of a MnS+FeS+MoS2 mixture led to poor protection or breakdown of a protective scale. The nature of the ferrite reaction products was determined by the ferrite composition, which can vary widely. The molybdenum-rich R-phase and AlMo3 reacted with sulfur slowly. When a protective preferential-sulfidation zone formed, the unreacted intermetallic phases provided a mechanical framework for FeAl2S4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Young,Rev. High-Temp. Mater. 6, 299 (1980).

    Google Scholar 

  2. S. Mrowec and K. Przybylski,High Temp. Mater. Proc. 6, 1 (1984).

    Google Scholar 

  3. K. N. Stafford and P. K. Datta,Mater. Sci. Technol. 5, 765 (1989).

    Google Scholar 

  4. G. Southwell and D. J. Young,Oxid. Met. 34, 161 (1990).

    Google Scholar 

  5. K. Nishida, T. Narita, T. Tani, and G. Sasaki,Oxid. Met. 14, 65 (1980).

    Google Scholar 

  6. K. Nishida and T. Narita,Proc. 8th Int. Congr. Metall. Corros. 1, 821 (1981).

    Google Scholar 

  7. J. C. Colson and J. P. Larpin,Mater. Sci. Eng. 87, 11 (1987).

    Google Scholar 

  8. P. J. Smith and W. W. Smeltzer,Oxid. Met. 28, 291 (1987).

    Google Scholar 

  9. P. J. Smith, P. R. S. Jackson, and W. W. Smeltzer,J. Electrochem. Soc. 134, 1424 (1987).

    Google Scholar 

  10. P. C. Patnaik and W. W. Smeltzer,Oxid. Met. 23, 53 (1985).

    Google Scholar 

  11. P. C. Patnaik and W. W. Smeltzer,J. Electrochem. Soc. 132, 1226 (1985).

    Google Scholar 

  12. E. A. Elrefaie and W. W. Smeltzer,Werkst. Korros. 38, 493 (1987).

    Google Scholar 

  13. R. V. Carter, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 341 (1989).

    Google Scholar 

  14. Y. Chen, D. J. Young, and S. Blairs,Oxid. Met. 40, 245 (1993).

    Google Scholar 

  15. Y. Chen, D. J. Young, and S. Blairs,Corros. Sci. (in press).

  16. W. W. Smeltzer, D. J. Young, T. Walec, and F. A. Elrefaie,Proc. 9th Int. Congr. Metallic Corro. 2, 24 (1984).

    Google Scholar 

  17. N. S. Quan and D. J. Young,Oxid. Met. 25, 107 (1986).

    Google Scholar 

  18. G. Wang, D. L. Douglass, and F. Gesmundo,Oxid. Met. 35, 349 (1991).

    Google Scholar 

  19. A. K. Sinha, R. A. Buckley, and W. Hume-Rothery,JISI 205, 191 (1967).

    Google Scholar 

  20. H. Hughes and S. R. Keown,JISI 206, 275 (1968).

    Google Scholar 

  21. C. B. Shoemaker, D. P. Shoemaker, and J. Meillor,Acta Cryst. 18, 37 (1965).

    Google Scholar 

  22. Y. Komura, W. G. Sly, and D. P. Shoemaker,Acta Cryst. 13, 575 (1960).

    Google Scholar 

  23. A. Atkinson,Rev. Modern Phys. 57, 437 (1985).

    Google Scholar 

  24. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988), p. 19.

    Google Scholar 

  25. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988), pp. 154–158.

    Google Scholar 

  26. G. M. Raynaud and R. A. Rapp,Oxid. Met. 21, 89 (1984).

    Google Scholar 

  27. D. J. Young, C. L. Tasker, and J. P. Orchard,Trans. Jpn. Inst. Met. 24(Suppl.), 491 (1983).

    Google Scholar 

  28. C. Wagner,Ber. Bunsenges. Physik. Chem. 70, 769 (1966).

    Google Scholar 

  29. J. P. Orchard and D. J. Young,J. Electrochem. Soc. 133, 1734 (1986).

    Google Scholar 

  30. H. Habazaki, J. Dabek, K. Hashimoto, S. Mrowec, and M. Danielewski,Corros. Sci. 34, 183 (1993).

    Google Scholar 

  31. K. Ohla, S. W. Kim, H. Fishmeister, and E. Fromm,Oxid. Met. 36, 379 (1991).

    Google Scholar 

  32. S. W. Kim, K. Ohla, H. Fischmeister, and E. Fromm,Oxid. Met. 36, 395 (1991).

    Google Scholar 

  33. Z. E. Majid and M. Lambertin,Oxid. Met. 27, 333 (1987).

    Google Scholar 

  34. S. Sheybany and D. L. Douglass,Oxid. Met. 30, 433 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Young, D.J. & Blairs, S. High-temperature-sulfidation behavior of Fe-Mo-Mn-Al alloys. Oxid Met 40, 433–460 (1993). https://doi.org/10.1007/BF00666385

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666385

Key words

Navigation