Skip to main content
Log in

Endocardial Potential Mapping from a Noncontact Nonexpandable Catheter: A Feasibility Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In previous studies, we established methodology for reconstructing endocardial potentials, electrograms and isochrones from a non-contact intracavitary probe during a single beat. The probe was too large to be introduced percutaneously. Here we examine the possibility of similar mapping with a small multielectrode catheter that could be introduced percutaneously and does not expand inside the cavity. Cavity geometry and endocardial potentials were recorded in an isolated canine left ventricle. Simulated catheter probes were introduced into the cavity. Probe potentials were computed from the measured endocardial potentials and perturbed to include measurement noise, geometrical errors, and limited electrode density. Endocardial potentials were then reconstructed from the perturbed probe potentials and compared to the actual measured potentials. Of all probes simulated, a 3.0 mm (9F) catheter that assumes a curved geometry (e.g., a J shape) inside the cavity performed best (better than a larger 7.6 mm cylinder simulating an inflatable probe). Without bending, a straight cylindrical probe of the same size (9F, 3.0 mm) did not perform well. Sixty probe electrodes were needed for accurate reconstruction. The J-probe reconstruction was very robust in the presence of noise (10%) and of geometry errors (3 mm shift, 10° rotation). The results demonstrate the feasibility of accurate single-beat endocardial mapping using a 9F percutaneous multielectrode catheter that assumes a J shape in the cavity without the need for expansion (e.g., into a balloon or a “basket”). The robustness of the procedure to noise and geometrical errors suggests its applicability in the clinical EP laboratory and the possibility of determining probe position in vivo using current imaging modalities. © 1998 Biomedical Engineering Society.

PAC98: 8759Wc

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brebbia, C. A., and J. Dominguez. Boundary Elements: An Introductory Course. New York: McGraw-Hill, 1989.

    Google Scholar 

  2. Burnes, J. E., D. C. Kaebler, B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. A field-compatible method for interpolating biopotentials. Ann. Biomed. Eng.26:37-47, 1998.

    Google Scholar 

  3. Chu, E., A. P. Fitzpatrick, M. C. Chin, K. Sudhir, P. G. Yock, and M. D. Lesh. Radiofrequency catheter ablation guided by intracardiac echocardiography. Circulation89(3):1301-1305, 1994.

    Google Scholar 

  4. Colli-Franzone, P., L. Guerri, B. Taccardi, and C. Viganotti. Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data. Calcolo22:91-186, 1985.

    Google Scholar 

  5. De Bakker, J. M. T., M. J. Janse, F. J. L. Van Cappelle, and D. Durrer. Endocardial mapping by simultaneous recording of endocardial electrograms during cardiac surgery for ventricular aneurysm. J. Am. Coll. Cardiol.2:947-953, 1983.

    Google Scholar 

  6. de Buijin, N. P., and F. M. Clements. Transesophageal Echocardiography. Boston, MA: Martinus Nijhoff, 1987.

    Google Scholar 

  7. Derfus, D. L., and T. C. Pilkington. Assessing the effect of uncertainty in intracavity electrode position on endocardial potential estimates. IEEE Trans. Biomed. Eng.39(7):676- 681, 1992.

    Google Scholar 

  8. Derfus, D. L., T. C. Pilkington, E. W. Simpson, and R. E. Ideker. A comparison of measured and calculated intracavity potentials for electrical stimuli in the exposed dog heart. IEEE Trans. Biomed. Eng.39(11):1192-1206, 1992.

    Google Scholar 

  9. Eldar, M., D. G. Ohad, J. J. Goldberger, Z. Rotstein, S. Hsu, D. K. Swanson, and A. J. Greenspon. Transcutaneous multielectrode basket catheter for endocardial mapping and ablation of ventricular tachycardia in the pig. Circulation96:2430-2437, 1997.

    Google Scholar 

  10. Gepstein, L., G. Hayam, and S. A. Ben-Haim. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. Circulation95:1611-1622, 1997.

    Google Scholar 

  11. Greenspon, A. J., S. S. Hsu, and S. Datorre. Successful radiofrequency catheter ablation of sustained ventricular tachycardia postmyocardial infarction in man guided by a multielectrode “basket” catheter. J. Cardiovasc. Electrophysiol.8:565-570, 1997.

    Google Scholar 

  12. Harada, A., H. J. D'Agostino, R. B. Schuessler, J. P. Bioneau, and J. L. Cox. Potential distribution mapping: new method for precise localization of intramural septal origin of ventricular tachycardia. Circulation78(III):137-147, 1988.

    Google Scholar 

  13. Jenkins, K. J., E. P. Walsh, S. D. Colan, D. M. Bergau, J. P. Saul, and J. E. Lock. Multipolar endocardial mapping of the right atrium during cardiac catheterization: description of a new technique. J. Am. Coll. Cardiol.22(4):1105-1110, 1993.

    Google Scholar 

  14. Josephson, M. E., L. N. Horowitz, S. R. Spielman, H. L. Waxman, and A. M. Greenspan. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am. J. Cardiol.49:207-220, 1982.

    Google Scholar 

  15. Khoury, D. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Reconstruction of endocardial potentials and activation sequences from intracavity probe measurements. Circulation91:845-863, 1995.

    Google Scholar 

  16. Khoury, D. S., and Y. Rudy. A model study of volume conductor effects on endocardial and intracavitary potentials. Circ. Res.71:511-525, 1992.

    Google Scholar 

  17. Khoury, D. S., and Y. Rudy. Reconstruction of endocardial potentials from intracavitary probe potentials: a model study. In: Proceedings of Computers in Cardiology, Durham, NC. New York: IEEE, 1992, pp. 9-12.

    Google Scholar 

  18. King, D. L., A. L. Gopal, P. M. Sapin, K. M. Schroder, and A. N. Demaria. Three dimensional echocardiography. Am. J. Card. Imaging7:209-220, 1993.

    Google Scholar 

  19. Intracardiac and Thoracic Mapping of Late Ventricular Potentials, edited by D. Lacroix, P. Savard, M. Shemasa, M. Kaltenbrunner, R. Cardinal, P. Page, and R. Nadeau. Mount Kisco, NY: Futura Publishing, 1993.

  20. Liu, Z. W., P. Jia, P. R. Ershler, B. Taccardi, R. L. Lux, D. S. Khoury, and Y. Rudy. Noncontact endocardial mapping: Reconstruction of electrograms and isochrones from intracavity probe potentials. J. Cardiovasc. Electrophysiol.8:415- 431, 1997.

    Google Scholar 

  21. Messinger-Rapport, B. J., and Y. Rudy. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Circ. Res.66:1023-1039, 1990.

    Google Scholar 

  22. Moorman, J. W., R. E. Melen, B. Skillicorn, and E. G. Solomon. Three-dimensional endocardial mapping system using a novel X-ray imager and locating catheter. J. Electrocardiol. Suppl.27:139-145, 1994.

    Google Scholar 

  23. Oster, H. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Electrocardiographic imaging: Noninvasive characterization of intramural myocardial activation from inversereconstructed epicaridal potentials and electrograms. Circulation97:1496-1507, 1998.

    Google Scholar 

  24. Oster, H. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Noninvasive electrocardiographic imaging: Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation96:1012-1024, 1997.

    Google Scholar 

  25. Peters, N. S., W. M. Jackman, R. J. Schilling, G. Beatty, and D. W. Davies. Human left ventricular endocardial activation mapping using a novel noncontact catheter. Circulation95:1658-1660, 1997.

    Google Scholar 

  26. Pilkinton, T. C., W. Krassowska, M. N. Morrow, and R. E. Ideker. Feasibility of estimating endocardial potentials from cavity potentials. In: Ninth Conference of the Engineering in Medicine and Biology Society. New York: IEEE, 1987.

    Google Scholar 

  27. Ramaswami, G., A. Al-kutoubi, A. N. Nicolaides, G. Geroulakos, M. Ferrara-Ryan, F. Aref, N. Labropoulos, and G. Sutton. Duplex controlled angioplasty. Eur. J. Vasc.8:457- 463, 1994.

    Google Scholar 

  28. Rudy, Y., and B. J. Messinger-Rapport. The inverse problem in electrocardiography: solution in terms of epicardial potentials. CRC Crit. Rev. Biomed. Eng.16:215-268, 1988.

    Google Scholar 

  29. Rudy, Y., and H. S. Oster. The electrocardiographic inverse problem. CRC Crit. Rev. Biomed. Eng.20:25-46, 1992.

    Google Scholar 

  30. Spielman, S. R., E. L. Michelson, L. N. Horowitz, J. F. Spear, and E. N. Moore. The limitation of epicardial mapping as a guide to the surgical therapy of ventricular tachycardia. Circulation57:666-670, 1978.

    Google Scholar 

  31. Taccardi, B., G. Arisi, E. Macchi, S. Baruffi, and S. Spaggiari. A new intracavity probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation75:272-281, 1987.

    Google Scholar 

  32. Tikhonov, A. N., and V. Y. Arsenin. Solution of Ill-Posed Problems. Washington, DC: VH Winston & Sons, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.W., Jia, P., Biblo, L.A. et al. Endocardial Potential Mapping from a Noncontact Nonexpandable Catheter: A Feasibility Study. Annals of Biomedical Engineering 26, 994–1009 (1998). https://doi.org/10.1114/1.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.32

Navigation