Skip to main content
Log in

Aspects of the chemistry of SF6/O2 plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The production ofSOF 4 initiated by the reaction of F atoms withSOF 2 has been studied in a gas-flow reactor at 295 K for helium bath gas number densities in the range (3.0–27.0)×1016 cm−3. The effect of O atoms on the formation ofSOF 4 has been analyzed in terms of the competing reactionsSOF 3+F→SOF4 andSOF 3+OSO 2 F 2+F. This analysis leads to the conclusion that the rate coefficients for these two processes are equal within an uncertainty of about 50%. Furthermore, both experiment and calculations indicate that the rate coefficient for reactions between F atoms andSOF 3 is close to its high-pressure limit under the conditions employed. The experiments set a lower limit on this rate coefficient of 5×10−11 cm3 s−1, while calculations based on unimolecular rate theory suggest that it may be greater than 1×10−10 cm3 s−1. These results make it clear that the two reactions shown above cannot explain the relative abundances ofSOF 4 andSO 2 F 2 which are observed inSF 6/O 2 plasmas. This suggests thatSF 2 is a major precursor in the sequence of reactions following the dissociation ofSF 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Van Brunt,J. Res. Natl. Bur. Stand. 90, 229 (1985).

    Google Scholar 

  2. M. C. Siddagangappa and R. J. van Brunt, Proceedings of the International Conference on Gas Discharges and their Applications, Oxford 1985, p. 247.

  3. I. Sauers, H. W. Ellis, and L. G. Christophorou,IEEE Trans, Electr. Insul. EI-21, 111 (1986).

    Google Scholar 

  4. F. Y. Chu,IEEE Trans, Electr. Insul. EI-21, 693 (1986).

    Google Scholar 

  5. M. C. Siddagangappa, R. J. van Brunt, and A. V. Phelps, Conf. Record of IEEE Int. Symp. on Electrical Insulation, Washington D.C., 1986, p. 225.

  6. R. J. van Brunt, J. T. Herron, and C. Fenimore, inGaseous Dielectrics, Pergamon, New York (1987), p. 163.

    Google Scholar 

  7. R. d'Agostino and D. L. Flamm,J. Appl. Phys. 52, 162 (1981).

    Google Scholar 

  8. A. Picard and G. Turban,Plasma Chem. Plasma Process. 5, 333 (1985).

    Google Scholar 

  9. S. Park, C. Sun, and R. J. Purtell,J. Vac. Sci. Technol. B. 5, 1372 (1987).

    Google Scholar 

  10. I. C. Plumb and K. R. Ryan,Plasma Chem. Plasma Process. 9, 409, (1989).

    Google Scholar 

  11. K. R. Ryan and I. C. Plumb,Plasma Chem. Plasma Process. 8, 263 (1988).

    Google Scholar 

  12. K. R. Ryan and I. C. Plumb,Plasma Chem. Plasma Process. 8, 281 (1988).

    Google Scholar 

  13. K. R. Ryan and I. C. Plumb,Plasma Chem. Plasma Process. 4, 271 (1984).

    Google Scholar 

  14. I. C. Plumb and K. R. Ryan,Plasma Chem. Plasma Process. 6, 11 (1986).

    Google Scholar 

  15. R. L. Brown,J. Res. Natl. Bur. Stand. 83, 1 (1978).

    Google Scholar 

  16. I. Pitt, R. G. Gilbert, and K. R. Ryan (to be published).

  17. I. C. Plumb and K. R. Ryan,Plasma Chem. Plasma Process. 6, 247 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, K.R. Aspects of the chemistry of SF6/O2 plasmas. Plasma Chem Plasma Process 9, 483–496 (1989). https://doi.org/10.1007/BF01023915

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023915

Key Words

Navigation