Skip to main content
Log in

Origin of the Isoelectric Heterogeneity of Monoclonal Immunoglobulin h1B4

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The origin of the microheterogeneity of a highly purified antiinflammatory humanized monoclonal antibody prepared in mammalian cell culture has been investigated. This antibody is an IgG directed toward human CD 18 (a subunit of leukocyte integrins). When the IgG preparation is subjected to isoelectric focusing, it is found to contain four major species with pI values ranging from 6 to 7. Although the relative amounts of each form differ and some species are present only in small quantities, each has been isolated by a combination of high-resolution anion-exchange chromatography and isoelectric focusing. Comparative studies reveal no detectable differences in overall secondary (far UV circular dichroism) or tertiary (intrinsic fluorescence) structure, molecular weight (laser-desorption mass spectroscopy), or antigen binding activity. When each of the isolated species is incubated under conditions which favor deamidation, it is converted to forms of lower pI which appear to correspond to naturally observed species. While the isolated light chain is relatively homogeneous, the heavy chain exhibits a pattern of isoelectric focusing bands similar to that of the intact immunoglobulin. These results suggest that in this case, charge microheterogeneity is due to the sequential deamidation of the immunoglobulin heavy chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. T. DiPiro, R. G. Hamilton, and J. P. Wei. Novel antibody drug products. Am. J. Surg. 164:77–84 (1992).

    Google Scholar 

  2. G. L. Boulianne, N. Hozumi, and M. J. Shulman. Production of functional chimeric mouse/human antibody. Nature 312:643–646 (1984).

    Google Scholar 

  3. L. Riechmann, M. Clark, H. Waldmann, and G. Winter. Reshaping human antibodies for therapy. Nature 332:323–327 (1988).

    Google Scholar 

  4. I. I. Singer, D. W. Kawka, J. A. DeMartino, B. L. Daugherty, K. O. Elliston, K. Alves, P. M. Cameron, G. C. Cuca, P. Davies, M. J. Forrest, D. M. Kazazis, M.-F. Law, A. B. Lenny, D. E. MacIntyre, R. Meurer, E. A. Padlan, S. Pandya, J. A. Schmidt, T. C. Seamans, S. Scott, M. Silberklang, A. R. Williamson, and G. E. Mark. Optimal humanization of 1B4, an anti-CD18 murine monoclonal antibody, is achieved by correct choice of human V-region framework sequences. J. Immuno. 150:2844–2857 (1993).

    Google Scholar 

  5. Z. L. Awdeh, A. R. Williamson, and B. A. Askonas. One cell-one immunoglobulin. Origin of limited heterogeneity of myeloma proteins. Biochem. J. 116:241–248 (1970).

    Google Scholar 

  6. E. Wenisch, S. Reiter, S. Hinger, F. Steindl, C. Tauer, A. Jungbauer, H. Katinger, and P. G. Righetti. Shifts of isoelectric points between cellular and secreted antibodies as revealed by isoelectric focusing and immobilized pH gradients. Electrophoresis 11:966–969 (1990).

    Google Scholar 

  7. R. D'Amelio, R. Biselli, R. Nisini, P. M. Matricardi, A. Aiuti, I. Mezzaroma, E. Pinter, O. Pontesilli, and F. Aiuti. Spectrotype of anti-gp120 antibodies remains stable during the course of HIV disease. J. AIDS 5:930–935 (1992).

    Google Scholar 

  8. R. G. Hamilton, C. B. Reimer, and L. S. Rodkey. Quality control of murine monoclonal antibodies using isoelectric focusing affinity immunoblot analysis. Hybridoma 6:205–217 (1987).

    Google Scholar 

  9. A. R. Williamson, M. R. Salaman, and H. W. Kreth. Microheterogeneity and allomorphism of proteins. Ann. N.Y. Acad. Sci. 209:210–224 (1973).

    Google Scholar 

  10. D. R. Hoffman. Studies on the structure and synthesis of immunoglobulins by isoelectric focusing. In N. J. Catsimpoolas and Drysdale (eds.), Biological and Biochemical Applications of Isoelectric Focusing, Plenum Press, New York and London, 1977, pp. 121–153.

    Google Scholar 

  11. B. J. Compton, J. S. Gerald, D. A. Lowe, and R. P. Elander. Micro isoelectric point heterogeneity of a murine monoclonal antibody (L6) originating from cell cultivation conditions. Biotech. Tech. 3:349–354 (1989).

    Google Scholar 

  12. M. F. Goldfarb. Two-dimensional electrophoretic analysis of immunoglobulin patterns in monoclonal gammopathies. Electrophoresis 13:440–444 (1992).

    Google Scholar 

  13. H. T. Wright. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit. Rev. Biochem. Mol. Biol. 26:1–52 (1991).

    Google Scholar 

  14. S. Clarke, R. C. Stephenson, and J. D. Lowenson. Lability of asparagine and aspartic acid residues in proteins and peptides: Spontaneous deamidation and isomerization reactions. In T. J. Ahern and M. C. Manning (eds.), Stability of Protein Pharmaceuticals: Chemical and Physical Pathways of Protein Degration, Part A, Plenum Press, New York and London, 1992, pp. 1–29.

    Google Scholar 

  15. B. A. Johnson, J. M. Shirokawa, W. S. Hancock, M. W. Spellman, L. J. Basa, and D. W. Aswad. Formation of isoasparate at two distinct sites during in vitro aging of human growth hormone. J. Biol. Chem. 264:14262–14272. (1989).

    Google Scholar 

  16. J. A. DeMartino, B. L. Daugherty, M. F. Law, G. C. Cuca, K. Alves, M. Silberklang, and G. E. Mark. Rapid humanization and expression of murine monoclonal antibodies. Antibody Immunoconj. Radiopharm. 4:829–835 (1991).

    Google Scholar 

  17. M. F. Law, G. E. Mark, J. A. Schmidt, and I. I. Singer. Recombinant human anti-CD18 antibodies. Europe Patent Office Application 0-440-351-A2 (1991).

  18. X. Saez-Llorens, H. S. Jafari, C. Severien, F. Parras, K. D. Olsen, E. J. Hansen, I. I. Singer, and G. H. McCracken. Enhanced attenuation of meningeal inflammation and brain edema by concomitant administration of anti-CD18 monoclonal antibodies and dexamethasone in experimental haemophilus meningitis. J. Clin. Invest. 88:2003–2011 (1991).

    Google Scholar 

  19. Isoelectric Focusing: Principles and Methods, Technical Booklet Series, Pharmacia Fine Chemicals, Uppsala, Sweden; 1982, p. 97.

  20. C. Sundstrom and K. Nilsson. Establishment and characterization of a human histiocytic lymphoma cell line (U 937). Int J. Cancer 17:565–577 (1976).

    Google Scholar 

  21. C. C. Yu Ip, W. J. Miller, D. J. Kubek, A.-M. Strang, H. van Halbeek, S. J. Piesecki, and J. A. Alhadeff. Structural characterization of the N-glycans of a recombinant hepatitis B surface antigen derived from yeast. Biochemistry 31:285–295 (1992).

    Google Scholar 

  22. R. J. Rothman, L. Warren, J. F. G. Vliegenthart, and K. J. Härd. Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochemistry 28:1377–1384 (1989).

    Google Scholar 

  23. A. Kobata. Function and pathology of the sugar chains of human immunoglobulin G. Glycobiology 1:5–8 (1990).

    Google Scholar 

  24. E. Kun and E. B. Kearney. Ammonia. Methods Enzym. Anal. (2nd ed.) 4:1802–1806 (1974).

    Google Scholar 

  25. S. E. Zale and A. M. Klibanov. Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry 25:5432–5444 (1986).

    Google Scholar 

  26. C. R. Middaugh and G. W. Litman. Atypical glycosylation of an IgG monoclonal cryoimmunoglobulin. J. Biol. Chem. 262:3671–3673 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, P.K., Bruner, M.W., Irwin, J.I. et al. Origin of the Isoelectric Heterogeneity of Monoclonal Immunoglobulin h1B4. Pharm Res 10, 1580–1586 (1993). https://doi.org/10.1023/A:1018912417607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018912417607

Navigation