Skip to main content
Log in

Biodistribution of Mixed Fluorocarbon–Hydrocarbon Dowel Molecules Used as Stabilizers of Fluorocarbon Emulsions: A Quantitative Study by Fluorine Nuclear Magnetic Resonance (NMR)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

19F NMR spectroscopy was used to determine quantitatively the organ distribution and organ retention time in rats of the mixed fluorocarbon–hydrocarbon dowel molecule C6F13CH = CHC10H21 (F6H10E), which stabilizes highly concentrated injectable fluorocarbon emulsions destined for in vivo oxygen transport and delivery. The only fluorine resonances detected in the 19F NMR spectra of the organs analyzed were those of the F6H10E dowel itself, indicating that metabolites, if present, have very low concentrations (<10−4 M, limit of our assay). The F6H10E content in the liver peaked 1 day after administration (7 days for the spleen). At a dose of 3.6 g/kg body weight, the half-life of F6H10E in the liver was 25 ± 5 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. G. Riess. Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Proc. Int. Symp. Blood Subst., Montreal, 1991. Biomat. Art. Cells Immob. Biotech. 20:183–204 (1992).

    Google Scholar 

  2. J. G. Riess. Fluorocarbon-based in vivo oxygen transport and delivery systems. Vox Sang. 61:225–239 (1991).

    Google Scholar 

  3. N. S. Faithfull. Oxygen delivery from fluorocarbon emulsions—Aspects of convective and diffusive transport. Biomat. Art. Cells Immob. Biotech. 20:797–804 (1992).

    Google Scholar 

  4. D. C. Long, D. M. Long, J. G. Riess, R. Follana, A. Burgan, and R. F. Mattrey. Preparation and application of highly concentrated perfluorooctyl bromide fluorocarbon emulsions. In T. M. S. Chang and R. P. Geyer (eds.), Blood Substitutes, Marcel Dekker, New York, 1989, pp. 441–442.

    Google Scholar 

  5. J. G. Riess and M. Postel. Stability and stabilization of fluorocarbon emulsions destined for injection. Biomat. Art. Cells Immob. Biotech. 20:819–830 (1992).

    Google Scholar 

  6. J. G. Riess, L. Solé Violan, and M. Postel. A new concept in the stabilization of injectable fluorocarbon emulsions: The use of mixed fluorocarbon-hydrocarbon dowels. J. Disp. Sci. Technol. 13:349–355 (1992).

    Google Scholar 

  7. K. Yokoyama, K. Yamanouchi, and R. Murashima. Excretion of perfluorochemicals after intravenous injection of their emulsion. Chem. Pharm. Bull. 23:1368–1373 (1975).

    Google Scholar 

  8. K. Yamanouchi, R. Murashima, and K. Yokoyama. Determination of perfluorochemicals in organs and body fluids by gas chromatography. Chem. Pharm. Bull. 23:1363–1367 (1975).

    Google Scholar 

  9. J. Lutz and M. Stark. Half-life and changes in the composition of a perfluorochemical emulsion within the vascular system of rats. Pflügers Arch. 410:181–184 (1987).

    Google Scholar 

  10. M. Watanabe, S. Hanada, K. Yano, K. Yokoyama, T. Suyama, and R. Naito. Long-term survival of rats severely exchange-transfused with Fluosol-DA. In Proceedings of the 4th International Symposium on Perfluorochemical Blood Substitution (Kyoto, October 1978), Elsevier Excerpta Medica, Amsterdam, 1979, pp. 347–357.

    Google Scholar 

  11. R. P. Geyer. Fluorocarbon-polyol artificial blood substitutes. N. Engl. J. Med. 289:1077–1082 (1973). (b) Y. Tsuda, K. Yamanouchi, K. Yokoyama, and T. Suyama. Discussion and considerations for the excretion mechanism of perfluorochemical emulsion. In T. M. S. Chang and R. P. Geyer (eds.), Blood Substitutes, Marcel Dekker, New York, 1988, pp. 473–483.

    Google Scholar 

  12. V. V. Obraztsov, A. S. Kabalnov, and K. N. Makarov. A novel model describing the excretion of perfluorochemicals from living organisms: dissolutions of fluorocarbons in lipid components of blood. J. Fluorine Chem. 54:376 (1991).

    Google Scholar 

  13. J. G. Riess. Reassessment of criteria for the selection of perfluorochemicals for second generation blood substitutes. Analysis of structure/property relationships. Art. Org. 8:44–56 (1984). (b) R. E. Moore and L. C. Clark. Synthesis and physical properties of perfluorocompounds useful as synthetic blood candidates. In R. Frey, H. Beisbarth, and K. Stosseck (eds.), Proceedings of the 5th International Symposium on Oxygen-Carrying Colloidal Blood Substitutes (Mainz, March 1981), W. Zuckschwerdt. Verlag Munich, 1982, pp. 50–60.

    Google Scholar 

  14. K. Yamanouchi, M. Tanaka, Y. Tsuda, K. Yokohama, S. Awazu, and Y. Kobayashi. Quantitative structure-in vivo half-life relationships of perfluorochemicals for use as oxygen transporters. Chem. Pharm. Bull. 33:1221–1231 (1985).

    Google Scholar 

  15. G. Gregoriadis. Liposomes as Drug Carriers. Recent Trends and Progress, Wiley, Chichester, 1988. (b) A. Wretlind. Current status of intralipid and other fat emulsions. In H. C. Meng and D. W. Wilmore (eds.), Fat Emulsions in Parenteral Nutrition, American Medical Association, Chicago, IL. 1976, pp. 109–122.

    Google Scholar 

  16. J. G. Riess, C. Cornelus, M. P. Krafft, A. M. Mahé, M. Postel, and L. Zarif. Novel fluorocarbon-based injectable oxygen-carrying formulations with long-term room-temperature storage stability. In P. Vaupel (ed.), Oxygen Transport to Tissues XV, Plenum, New York (in press).

  17. M. C. Malet-Martino, D. Betbeder, A. Lattes, A. Lopez, R. Martino, G. Francois, and S. Cros. Fluosol 43 intravascular persistence in mice measured by 19F NMR. J. Pharm. Pharmacol. 36:556–559 (1984).

    Google Scholar 

  18. P. S. Tofts and S. Wray. A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR Biomed. 1:1–10 (1988).

    Google Scholar 

  19. N. O. Brace. Relative reactivities and stereochemistry of addition of iodoperfluoroalkanes to cyclic olefins. J. Org. Chem. 37:2429–2433 (1972).

    Google Scholar 

  20. M. Le Blanc, J. G. Riess, D. Poggi, and R. Follana. Use of lymphoblastoïd Namalva cell cultures in a toxicity test. Application to the monitoring of detoxification procedures for fluorocarbons to be used as intravascular oxygen carriers. Pharm. Res. 3:246–248 (1985).

    Google Scholar 

  21. M. P. Krafft, J. P. Rolland, and J. G. Riess. Detrimental effect of excess lecithin on the stability of fluorocarbon/lecithin emulsions. J. Phys. Chem. 95:5673–5676 (1991).

    Google Scholar 

  22. Y. Tsuda, K. Yamanouchi, H. Okamoto, K. Yokoyama, and C. Heldebrant. Intravascular behavior of a perfluorochemical emulsion. J. Pharmacobio-Dyn. 13:165–171 (1990).

    Google Scholar 

  23. B. I. Islamov, Iu V. Ladilov, V. A. Buevich, and R. V. Bobrovskioi. An emulsion of fluorocarbons as a protective agent against myocardial ischemia. Vestn. Akad. Med. Nauk. SSSR 3:39–43 (1991).

    Google Scholar 

  24. Y. Tsuda, K. Yamanouchi, K. Yokoyama, and T. Suyama. Discussion and considerations for the excretion mechanism of perfluorochemical emulsion. In T. M. S. Chang and R. P. Geyer (eds.), Blood Substitutes, Marcel Dekker, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarif, L., Postel, M., Septe, B. et al. Biodistribution of Mixed Fluorocarbon–Hydrocarbon Dowel Molecules Used as Stabilizers of Fluorocarbon Emulsions: A Quantitative Study by Fluorine Nuclear Magnetic Resonance (NMR). Pharm Res 11, 122–127 (1994). https://doi.org/10.1023/A:1018914215345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018914215345

Navigation