Skip to main content
Log in

Brain Delivery of Biotin Bound to a Conjugate of Neutral Avidin and Cationized Human Albumin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The delivery of pharmaceuticals through the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo, may be facilitated by conjugation of therapeutics to brain drug delivery vectors. Since cationized albumin has been shown to undergo absorptive-mediated transcytosis through the BBB in vivo, cationized human serum albumin (cHSA) is a potential brain drug delivery vector in humans. Conjugation of biotinylated therapeutics to brain drug delivery vectors is facilitated by the preparation of vector/ avidin conjugates. Therefore, the present studies describe the preparation of a cHSA-avidin conjugate and the delivery of 3H-biotin bound to this conjugate through the BBB in vivo in anesthetized rats. Since the cationic nature of avidin (AV) accelerates the removal of avidin-based conjugates from blood in vivo, the present studies also describe the preparation and the pharmacokinetics of 3H-biotin bound to a conjugate of cHSA and neutral avidin (NLA). The bifunctional nature of the conjugate was retained: the cHSA/ NLA conjugate contained 2.8 to 6.8 biotin binding sites per conjugate, and the BBB permeability-surface area (PS) product for 3H-biotin bound to cHSA/NLA was at least 7-fold greater than the BBB PS product for 3H-biotin bound to a conjugate of NLA and native HSA (nHSA). The systemic clearance of the cHSA conjugate was reduced 10-fold by the use of NLA as opposed to AV. The increased area under the plasma concentration curve (AUC) of the cHSA-NLA conjugate correlated with an increase in brain delivery of 3H-biotin as compared to the brain delivery achieved with the cHSA/AV conjugate. In conclusion, these studies demonstrate that cHSA serves as a brain drug delivery vector and that the use of neutral forms of avidin increases the plasma AUC of the conjugate and enhances the brain delivery of biotin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. B. M. M. Van Bree, A. G. De Boer, M. Danhof, and D. D. Breimer. Drug transport across the blood-brain barrier. Pharm. World Sci. 15:2–9 (1993).

    Google Scholar 

  2. W. M. Pardridge. Peptide Drug Delivery to the Brain, Raven Press, New York, 1991.

    Google Scholar 

  3. R. Oliyai and V. J. Stella. Prodrugs of peptides and proteins for improved formulation and delivery. Anna. Rev. Pharmacol. Toxicol. 32:521–544 (1993).

    Google Scholar 

  4. Y. Sugiyama and M. Hanano. Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body. Pharm. Res. 6:192–202 (1989).

    Google Scholar 

  5. P. M. Friden, L. Walus, G. F. Musso, M. A. Taylor, B. Malfroy, and R. M. Starzyk. Antitransferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88:4771–4775 (1991).

    Google Scholar 

  6. W. M. Pardridge, J. L. Buciak, and P. M. Friden. Selective transport of anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259:66–70 (1991).

    Google Scholar 

  7. W. A. Jeffries, M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason. Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163 (1984).

    Google Scholar 

  8. W. M. Pardridge, J. Eisenberg, and J. Yang. Human blood-brain barrier transferrin receptor. Metabolism 36:892–895 (1987).

    Google Scholar 

  9. A. K. Kumagai, J. Eisenberg, and W. M. Pardridge. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J. Biol. Chem. 262:15214–15219 (1987).

    Google Scholar 

  10. T. Terasaki, K. Hirai, H. Sato, Y. S. Kang, and A. Tsuji. Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078, into the blood-brain barrier. J. Pharmacol. Exp. Ther. 251:351–357 (1989).

    Google Scholar 

  11. T. Shimura, S. Tabata, T. Ohnishi, T. Terasaki, and A. Tsuji. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier. J. Pharmacol. Exp. Ther. 258:459–465 (1991).

    Google Scholar 

  12. T. Yoshikawa and W. M. Pardridge. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J. Pharmacol. Exp. Ther. 263:897–903 (1992).

    Google Scholar 

  13. U. Bickel, T. Yoshikawa, E. M. Landaw, K. F. Faull, and W. M. Pardridge. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc. Natl. Acad. Sci. 90:2618–2622 (1993).

    Google Scholar 

  14. I. I. Kaplan. One year observation of the treatment of cancer with avidin (egg white). Am. J. Med. Sci. 207:733–743 (1944).

    Google Scholar 

  15. D. E. Trentham, R. A. Dynesius-Trentham, E. J. Orav, D. Combitchi, C. Lorenzo, K. L. Sewell, D. A. Hafler, H. L. Weiner. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261:1727–1730 (1993).

    Google Scholar 

  16. H. L. Weiner, G. A. Mackin, M. Matsui, E. J. Orav, S. J. Khoury, D. M. Dawson, and D. A. Hafler. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259:1321–1324 (1993).

    Google Scholar 

  17. G. Winter and C. Milstein. Man-made antibodies. Nature 349:293–299 (1991).

    Google Scholar 

  18. A. Muckerheide, R. J. Apple, A. J. Pesce, and J. G. Michael. Cationization of protein antigens. J. Immunol. 138:833–837 (1987).

    Google Scholar 

  19. W. M. Pardridge, D. Triguero, J. L. Buciak, and J. Yang. Evaluation of cationized rat albumin as a potential blood-brain barrier drug transport vector. J. Pharmacol. Exp. Ther. 255:893–899 (1990).

    Google Scholar 

  20. Y.-S. Kang, U. Bickel, and W. M. Pardridge. Pharmacokinetics and saturable blood-brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferrin receptor. Drug Metab. Disp. 22:99–105 (1994).

    Google Scholar 

  21. Y.-S. Kang and W. M. Pardridge. Use of neutral-avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate. J. Pharmacol. Exp. Ther. 269:344–350 (1994).

    Google Scholar 

  22. W. M. Pardridge, R. J. Boado, and J. L. Buciak. Drug delivery of antisense oligonucleotides or peptides to tissues in vivo using an avidin-biotin system. Drug Delivery 1:43–50 (1993).

    Google Scholar 

  23. B. Schechter, R. Silberman, R. Arnon, and M. Wilchek. Tissue distribution of avidin and streptavidin injected to mice. Effect of avidin carbohydrate, streptavidin truncation and exogenous biotin. Eur. J. Biochem. 189:327–331 (1990).

    Google Scholar 

  24. M. Wilchek and E. Baya. Avidin-biotin immobilisation systems. In: Application of Immobilized Macromolecules, ed. U. B. Sleytr, P. Messner, D. Pum, and M. Sara, Eds. Springer-Verlag, New York, pp. 51–60 (1993).

    Google Scholar 

  25. M. Gibaldi and D. Perrier. Pharmacokinetics, Marcel Dekker, Inc., New York (1982).

    Google Scholar 

  26. D. Triguero, J. B. Buciak, and W. M. Pardridge. Capillary depletion method for quantifying blood-brain barrier transcytosis of circulating peptides and plasma proteins. J. Neurochem. 54:1882–1888 (1990).

    Google Scholar 

  27. N. M. Green. Avidin. Adv. Protein Chem. 29:85–133 (1975).

    Google Scholar 

  28. W. A. Jefferies, M. R. Brandon, A. F. Williams, and S. V. Hunt. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunol. 54:333–341 (1985).

    Google Scholar 

  29. J. B. Fishman, J. B. Rubin, J. V. Handrahan, J. R. Connor, and R. E. Fine. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J. Neurosci. Res. 18:299–304 (1987).

    Google Scholar 

  30. A. W. Vorbrodt. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J. Neurocytol. 18:359–368 (1989).

    Google Scholar 

  31. N. M. Green. Avidin and streptavidin. Methods Enzymol. 184:51–67 (1990).

    Google Scholar 

  32. A. Samii, U. Bickel, U. Stroth, and W. M. Pardridge. Quantitation of blood-brain barrier transport of neuropeptides with a metabolically stable dermorphin analogues. Am. J. Physiol., in press (1994).

  33. W. M. Pardridge, Y.-S. Kang, and J. L. Buciak. Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharm. Res., in press (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YS., Pardridge, W.M. Brain Delivery of Biotin Bound to a Conjugate of Neutral Avidin and Cationized Human Albumin. Pharm Res 11, 1257–1264 (1994). https://doi.org/10.1023/A:1018982125649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018982125649

Navigation