Skip to main content
Log in

Binding of Sulfonamides to Carbonic Anhydrase: Influence on Distribution Within Blood and on Pharmacokinetics

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Four new aromatic sulfonamides were synthesized and purified by standard techniques. Two were unsubstituted, primary sulfonamides and two possessed substituents on the sulfonamide nitrogen. The affinity of the inhibitors for the enzyme carbonic anhydrase was determined in terms of the inhibitory potency, which was found to be dependent on the presence of an unsubstituted sulfonamide group. Binding studies were performed in erythrocyte suspensions using a range of concentrations and the unbound, extracellular concentrations were determined by high-performance liquid chromatographic (HPLC) assay. The dissociation constant of binding and the total binding capacity of the erythrocytes were estimated by nonlinear regression using a two-site binding model. The affinity of the compounds for erythrocytes reflected their inhibitory potency against the enzyme. Binding to plasma proteins was more dependent on lipophilicity and pK a and was stronger for the substituted sulfonamides. Pharmacokinetic studies in rats showed that the unsubstituted sulfonamides with a high affinity for carbonic anhydrase in erythrocytes have longer half-lives and lower clearance values than the substituted sulfonamides which were more strongly bound to plasma proteins. However, comparison of unbound clearance values showed that the variations in molecular structure, which produced differences in carbonic anhydrase binding and in distribution, also produced variations in susceptibility to elimination processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Gibaldi, G. Levy, and P. J. McNamara. Clin. Pharmacol. Ther. 24:1–8 (1978).

    Google Scholar 

  2. J. J. Coffey, F. J. Bullock, and P. T. Schoenemann. J. Pharm. Sci. 60:1623–1628 (1973).

    Google Scholar 

  3. J. Jansen. J. Pharmacokin. Biopharm. 9:15–26 (1981).

    Google Scholar 

  4. T. Fujita. J. Med. Chem. 15:1049–1056 (1977).

    Google Scholar 

  5. J. K. Seydel. In J. C. Dearden (ed.), Quantitative Approaches to Drug Design, Elsevier, Amsterdam, 1983, pp. 163–181.

    Google Scholar 

  6. T. H. Maren. Physiol. Rev. 47:595–781 (1967).

    Google Scholar 

  7. P. J. Wistrand and T. Wåhlstrand. Biochim. Biophys. Acta 481:71–72 (1977).

    Google Scholar 

  8. T. Wåhlstrand, K.-G. Knuutila, and P. J. Wistrand. Scand. J. Clin. Lab. Invest. 39:503–509 (1979).

    Google Scholar 

  9. H. Krebbs. Biochemistry 43:525–528 (1948).

    Google Scholar 

  10. A. Vedani and E. F. Mayer. J. Pharm. Sci. 73:352–358 (1984).

    Google Scholar 

  11. N. Kakeya, N. Yata, A. Kamade, and M. Aoki. Chem. Pharm. Bull. 17:2000–2007 (1975).

    Google Scholar 

  12. C. Hansch, J. McClarin, T. Klein, and R. Lanridge. Mol. Pharmacol. 27:493–498 (1986).

    Google Scholar 

  13. B. A. Mulley, G. D. Parr, and R. M. Rye. Eur. J. Clin. Pharmacol. 17:203–207 (1980).

    Google Scholar 

  14. B. Beerman, K. Hellstrom, B. Lindstrom, and A. Rosen. Clin. Pharmacol. Ther. 17:424–432 (1975).

    Google Scholar 

  15. J. T. Lettieri and S. T. Portelli. J. Pharmacol Exp. Ther. 224:269–272 (1983).

    Google Scholar 

  16. L. Aarons, S. Toon, and M. Rowland. J. Pharmacol. Meth. 12:337–346 (1986).

    Google Scholar 

  17. A. M. Islam, I. B. Hammout, and M. M. Atwa. Egypt. J. Chem. 17:689–697 (1974).

    Google Scholar 

  18. C. Alsen and F. K. Ohnesorge. Zeitschr. Klin. Chem. Klin. Biochem. 11:329–332 (1974).

    Google Scholar 

  19. J. E. A. McIntosh. Biochem. J. 114:463–467 (1969).

    Google Scholar 

  20. J. E. Coleman. Pharmacol. Rev. 15:221–242 (1975).

    Google Scholar 

  21. S. Toon. Ph.D. thesis, University of Manchester, Manchester, U.K., 1981.

  22. S. Toon and M. Rowland. J. Pharmacol. Meth. 5:321–323 (1981).

    Google Scholar 

  23. P. J. Wistrand. Acta Physiol. Scand. 113:417–426 (1981).

    Google Scholar 

  24. T. H. Maren and E. O. Couto. Arch. Biochem. Biophys. 196:501–510 (1979).

    Google Scholar 

  25. W. F. Bayne, L.-C. Chu, and S. Theeuwe. J. Pharm. Sci. 68:912–913 (1979).

    Google Scholar 

  26. G. Lonnerholm, P. J. Wistrand, and E. Baraney. Acta Physiol. Scand. 126:51–60 (1986).

    Google Scholar 

  27. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  28. M. K. Cassidy and J. B. Houston. Drug Metab. Dispos. 12:619–624 (1980).

    Google Scholar 

  29. G. Beisenherz, F. W. Koss, L. Klatt, and B. Binder. Arch. Int. Pharmacodyn. 166:76–93 (1966).

    Google Scholar 

  30. F. Eicholtz and I. Iravani. Arzneim. Forsch. 15:538–542 (1965).

    Google Scholar 

  31. H. Weber, W. Aumuller, R. Weyer, K. Muth, and F. H. Schmidt. U.S. patent 3426067 (1969).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boddy, A., Edwards, P. & Rowland, M. Binding of Sulfonamides to Carbonic Anhydrase: Influence on Distribution Within Blood and on Pharmacokinetics. Pharm Res 6, 203–209 (1989). https://doi.org/10.1023/A:1015957315462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015957315462

Navigation