Skip to main content
Log in

The Role of Metabolites in Bioequivalency Assessment. I. Linear Pharmacokinetics without First-Pass Effect

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The estimation of bioequivalency using metabolite data was investigated for immediate release formulations with drugs exhibiting linear pharmacokinetics and no first-pass effect. This was accomplished by generating parent drug and metabolite plasma level profiles assuming formation and excretion rate-limited pharmacokinetic models with absorption rate constants obtained from bivariate normal distributions and designated random errors. Simulation results indicated that bioequivalence determination using C maxof parent drug and metabolite was independent of the metabolite models as evaluated by confidence interval approach. However, a clear difference with respect to the outcome of bioequivalence evaluation arises depending upon the utilization of C max values for the parent drug and metabolite. The major reason for this disparity was attributed to the minimal effect of the absorption process for the parent drug on the formation of the metabolite. This phenomenon results in an apparent lower intrasubject variability for C max of the metabolite and, in turn, a tighter confidence interval for C max of the metabolite in comparison with the parent drug. The simulated results have been found to be in agreement with the bioequivalency data for acetohexamide, allopurinol, procainamide, and sulindac. In all cases, the interval of the 90% confidence limit for C max of the metabolite is always smaller than that of the parent drug, regardless of the drug pharmacokinetics and the level of error contained in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. L. Nightingale and J. C. Morrison. JAMA 258 (9):1200–1204 (1987).

    Google Scholar 

  2. S. C. Olson, M. A. Eldon, R. D. Toothaker, J. J. Ferry, and W. A. Colburn. J. Clin. Pharmacol. 27:342–345 (1987).

    Google Scholar 

  3. Code of Federal Regulations, Title 21, Part 320, Office of the Federal Register, National Archives and Records Administration, Washington, D.C. 20408.

  4. A. J. Cummings and B. K. Martin. Nature 200:1296–1297 (1963).

    Google Scholar 

  5. D. E. Drayer. Clin. Pharmacokin. 1:426–443 (1976).

    Google Scholar 

  6. J. B. Houston. Pharm. Ther. 15:521–552 (1982).

    Google Scholar 

  7. D. E. Drayer. Drugs 24:519–542 (1982).

    Google Scholar 

  8. S. Pond and T. Tozer. Clin. Pharmacokin. 9:1–25 (1984).

    Google Scholar 

  9. M. V. St-Pierre, X. Xu, and S. Pang. J. Pharmacokin. Biopharm. 16:493–527 (1988).

    Google Scholar 

  10. Pharmaceutical Manufacturers Association (PMA). Drug Metabolism Subsection Workshop on “Pharmacokinetics of Drug Metabolites,” Bethesda, Maryland, Apr. 27–28, 1989.

  11. R. C. Boston, P. C. Greif, and M. Berman. Comp. Prog. Biomed. 13:111–119 (1981).

    Google Scholar 

  12. J. J. Lima, D. R. Conti, A. L. Goldfarb, W. J. Tilstone, L. H. Golden, and W. J. Jusko. J. Pharmacokin. Biopharm. 7:69–85 (1979).

    Google Scholar 

  13. T. M. Ludden and M. H. Crawford. Clin. Pharmacol. Ther. 31 (3):343–349 (1982).

    Google Scholar 

  14. A. J. Jackson. Biopharm. Drug Disp. 8:483–496 (1987).

    Google Scholar 

  15. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  16. G. Raghow and M. C. Meyer. J. Pharm. Sci. 70:1166–1168 (1981).

    Google Scholar 

  17. W. G. Kramer and S. Feldman. J. Chromatogr. Biomed. Appl. 162:94–97 (1979).

    Google Scholar 

  18. C. Lai, B. L. Kamath, Z. M. Look, and A. Yacobi. J. Pharm. Sci. 69 (8):982–984 (1980).

    Google Scholar 

  19. L. J. Dusci and L. P. Hackett. J. Chromatogr. 171:490–493 (1979).

    Google Scholar 

  20. SAS Institute. SASISTAT User's Guide, Release 6.03 ed., SAS Institute Inc., Cary, N.C.

  21. D. J. Schuirmann. J. Pharmacokin. Biopharm. 15:657–680 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ML., Jackson, A.J. The Role of Metabolites in Bioequivalency Assessment. I. Linear Pharmacokinetics without First-Pass Effect. Pharm Res 8, 25–32 (1991). https://doi.org/10.1023/A:1015865920043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015865920043

Navigation