Skip to main content
Log in

Energetics of the oxidative addition of I2 to [Ir(Μ-L)(CO)2]2 (L=StBu, 3,5-Me2pz,7-aza) complexes. X-ray structures of Ir(Μ-StBu)(I)(CO)2]2 and [Ir(Μ-3,5-Me2pz)(I)(CO)2]2

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The energetics of the oxidative additive of I2 to [Ir(Μ-L)(CO)2]2 [L =t-buthylthiolate (StBu), 3,5-dimethylpyrazolate (3,5-Me2pz), and 7-azaindolate (7-aza)] complexes was investigated by using the results of reaction-solution calorimetric measurements, X-ray structure determinations, and extended Hückel (EH) molecular orbital calculations. The addition of 1 mol of iodine to 1 mol of [Ir(Μ-L)(CO)2]2, in toluene, leads to [Ir(Μ-L)(I)(CO)2]2, with the formation of two Ir-I bonds and one Ir-Ir bond. The following enthalpies of reaction were obtained for this process: −125.8±4.9 kJ mol−1 (L = StBu), −152.0±3.8 kJ mol−1 (L=3,5-Me2pz), and −205.9±9.9 kJ mol¹ (L=7-aza). These results are consistent with a possible decrease of the strain associated with the formation of three-, four-, and five-membered rings, respectively, in the corresponding products, as suggested by the results of EH calculations. The calculations also indicate a slightly stronger Ir-Ir bond for L = 3,5-Me2pz than for L= StBu despite the fact that the Ir-Ir bond lengths are identical for both complexes. The reaction of 1 mol of [Ir(Μ-StBu)(CO)2]2 with 2 mol of iodine to yield [Ir(Μ-StBu)(I)2(CO)2]2 was also studied. In this process four Ir-I bonds are formed, and from the corresponding enthalpy of reaction (−186.4±2.7 kJ mol−1) a solution phase Ir-I mean bond dissociation enthalpy in [Ir(Μ-StBu)(I)2(CO)2]2,\(\overline {DH} _{\sin } (Ir - I) = 122.2 \pm 0.7 kJ mol^{ - 1} \), was derived. This value is lower than most\(\overline {DH} _{\sin } (Ir - I)\) values reported for octahedral mononuclear Ir111 complexes. New large-scale syntheses of the [Ir(Μ-L)(CO)2]2 complexes, with yields up to 90%, using [Ir(acac)(CO)2] as starting material, are also reported. The X-ray structures of [Ir(Μ-L)(I)(CO)2]2 (L=StBu and 3,5-Me2pz) complexes have been determined. For L=StBu the crystals are monoclinic, space group P2l/c,a=10.741(2) å,b= 11.282(3) å,c=18.308(3) å,Β=96.71(1)‡, andZ=4. Crystals of theΜ-3,5-Me2pz derivative are monoclinic, space group P2l/n,a=14.002(3) å,b= 10.686(1) å,c=15.627(3) å,Β=112.406(8)‡, andZ=4. In both complexes the overall structure can be described as two square-planar pyramids, one around each iridium atom, with the iodine atoms in the apical positions, and the equatorial positions occupied by two CO groups and the two sulfur atoms of the StBu ligands, or two N atoms of the pyrazolyl ligands. In the case of L=StBu the pyramids share a common edge defined by the two bridging sulfur atoms and for L =3,5-Me2pz they are connected through the two N-N bonds of the pyrazolyl ligands. The complexes exhibit short Ir-Ir single bonds of 2.638(1) å for L=StBu and 2.637(1) å for L=3,5-Me2Pz. The oxidative addition of iodine to [Ir(Μ-3,5-Me2pz)(CO)2]2 results in a remarkable compression of 0.608 å in the Ir-Ir separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review and leading references see Atwood, J. D. InComprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A.; Wilkinson, G., Eds.; Elsevier: Oxford, 1995; Vol. 8; pp. 324–332.

    Google Scholar 

  2. He, X.; Maisonnant, A.; Dahan, F.; Poilblanc, R.Organometallics 1991,10, 2443.

    Google Scholar 

  3. Ciriano, M. A.; Pérez-Torrente, J.; Oro, L. A.J. Organomet. Chem. 1993,445, 273.

    Google Scholar 

  4. Ciriano, M. A.; Viguri, F.; Oro, L. A.; Tiripicchio, A.; Tiripicchio-Camellini, M.Angew. Chem. Int. Ed. Engl. 1987,26, 444.

    Google Scholar 

  5. Ciriano, M. A.; Sebastián, S.; Oro, L. A.; Tiripicchio, A.; Tiripicchio-Camellini, M.; Lahoz, F. J.Angew. Chem. Int. Ed. Engl. 1988,26, 402.

    Google Scholar 

  6. Pinillos, M. T.; Elduque, A.; Oro, L. A.; Lahoz, F. J.; Bonati, F.; Tiripicchio, A.; Tiripicchio-Camellini, M.J. Chem. Soc. Dalton Trans. 1990, 989.

  7. Fernández, M. J.; Modrego, J.; Lahoz, F. J.; López, J. A.; Oro, A.J. Chem. Soc. Dalton Trans. 1990, 2587.

  8. Ciriano, M. A.; Pérez-Torrente, J.; Oro, L. A.J. Organomet. Chem. 1993,445, 267.

    Google Scholar 

  9. Bonnet, J.-J.; Kalck, P.; Poilblanc, R.Angew. Chem. Int. Ed. Engl. 1980,19, 551.

    Google Scholar 

  10. Kalck, P.; Bonnet, J.-J.Organometallics 1982,1, 1211.

    Google Scholar 

  11. Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R.; Eadie, D. T.; Stobart, S. R.; Atwood, J. L.; Zaworotko, M. J.J. Am. Chem. Soc. 1982,104, 920.

    Google Scholar 

  12. Coleman, A. W.; Eadie, D. T.; Stobart, S. R.; Atwood, J. L.; Zaworotko, M. J.J. Am. Chem. Soc. 1982,104, 922.

    Google Scholar 

  13. Beveridge, K. A.; Bushnell, G. W.; Stobart, S. R.; Atwood, J. L.; Zaworotko, M. J.Organometallics 1983,2, 1447.

    Google Scholar 

  14. Atwood, J. L.; Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R.; Eadie, D. T.; Stobart, S. R.; Zaworotko, M.J. Inorg. Chem. 1984,23, 4050.

    Google Scholar 

  15. Harrison, D. G.; Stobart, S. R.J. Chem. Soc., Chem. Commun. 1986, 285.

  16. Brost, R. D.; Fjeldsted, D. O. K.; Stobart, S. R.J. Chem. Soc., Chem. Commun. 1989, 488.

  17. Brost, R. D.; Stobart, S. R.J. Chem. Soc., Chem. Commun. 1989, 498.

  18. Brost, R. D.; Stobart, S. R.Inorg. Chem. 1989,28, 4309.

    Google Scholar 

  19. Cotton, F. A.; Lahuerta, P.; Sanaú, M.; Solana, I.; Schwotzer, W.Inorg. Chem. 1988,27, 2131.

    Google Scholar 

  20. Caspar, J. V.; Gray, H. B.J. Am. Chem. Soc. 1984,106, 3029.

    Google Scholar 

  21. Rodman, G. S.; Daws, C. A.; Mann, K. R.Inorg. Chem. 1988,27, 3347.

    Google Scholar 

  22. Pitt, C. G.; Monteith, L. K.; Ballard, L. F.; Collman, J. P.; Morrow, J. C.; Roper, W. R.; Ulk, D.J. Am. Chem. Soc. 1966,88, 4286.

    Google Scholar 

  23. Bonati, F.; Ugi, R.Chem. Ind. (Rome) 1964,46, 1332.

    Google Scholar 

  24. Nussbaum, S.; Rettig, S. J.; Storr, A.; Trotter, J.Can. J. Chem. 1985,63, 692.

    Google Scholar 

  25. De Mountauzon, D.; Poilblanc, R.Inorg. Synth. 1980,20, 236.

    Google Scholar 

  26. Sheldrick, G. M. InCrystallographic Computing 3; Sheldrick, G. M.; Krüger, C.; Goddard, R., Eds.; Oxford University Press: Oxford, 1985.

    Google Scholar 

  27. Sheldrick, G. M. University of Göttingen, 1985.

  28. Johnson, C. K.ORTEP II, A Fortran Thermal-ellipsoid Plot Program for Crystal Structure Illustrations; Report ORNL-5138, Oak Ridge National Laboratory: Oak Ridge, TN, 1976.

    Google Scholar 

  29. Keller, E.SCHAKAL92, University of Freiburg, Germany, 1992.

    Google Scholar 

  30. International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, 1974; Vol. 4.

  31. Calhorda, M. J.; Carrondo, M. A. A. F. de C. T.; Dias, A. R.; GalvÃo, A. M.; Garcia, M. H.; Martins, A. M.; Minas da Piedade, M. E.; Pinheiro, C. I.; RomÃo, C. C.; Martinho Simões, J. A.; Veiros, L. F.Organometallics 1991,10, 483, and references citded therein.

    Google Scholar 

  32. Leal, J. P.; Pires de Matos, A.; Martinho Simões, J. A.J. Organomet. Chem. 1991,403, 1.

    Google Scholar 

  33. Hoffmann, R.J. Chem. Phys. 1963,39, 1397.

    Google Scholar 

  34. Hoffmann, R.; Lipscomb, W. N.J. Chem. Phys. 1962,36, 2179.

    Google Scholar 

  35. Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J. C.; Hoffmann, R.J. Am. Chem. Soc. 1978,100, 3686.

    Google Scholar 

  36. Mealli, C.; Proserpio, D. M.J. Chem. Ed. 1990,67, 39.

    Google Scholar 

  37. Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Watson, D. G.Cambridge Structural Database, J. Chem. Inf. Comput. Sci. 1991,31, 204.

    Google Scholar 

  38. Amane, M. E.; Maisonnat, A.; Dahan, F.; Poiblanc, R.New J. Chem. 1988,12, 661.

    Google Scholar 

  39. Maisonnat, A.; Bonnet, J.-J.; Poiblanc, R.Inorg. Chem. 1980,19, 3168.

    Google Scholar 

  40. Megehee, E. G.; Johnson, C. E.; Eisenberg, R.Inorg. Chem. 1989,28, 2423.

    Google Scholar 

  41. Teo, B.-K.; Snyder-Robinson, P. A.J. Chem. Soc., Chem. Commun. 1979, 255.

  42. Calado, J. C. G.; Dias, A. R.; Martinho Simões, J. A.Rev. Port. Quim. 1979,21, 129.

    Google Scholar 

  43. Based on δf H m o(I, g)=106.76±0.04 kJ mol−1 and δf H m o(I2, g)=62.42±0.08 kJ mol−1 InCODATA Key Values for Thermodynamics, Cox, J. D.; Wagman, D. D.; Medvedev, A., Eds.; Hemisphere: New York, 1989.

  44. Burke, N. E.; Singhal, A.; Hintz, M. J.; Ley, J. A.; Hui, H.; Smith, L. R.; Blake, D. M.J. Am. Chem. Soc. 1979,101, 74.

    Google Scholar 

  45. Drago, R. S.; Nozari, M. S.; Klinger, R. J.; Chamberlain, C. S.Inorg. Chem. 1979,18, 1254.

    Google Scholar 

  46. Martinho Simões, J. A.; Beauchamp, J. L.Chem. Rev. 1990,90, 629.

    Google Scholar 

  47. Minas da Piedade, M. E.; Martinho Simões, J. A.J. Organomet. Chem. 1996,518, 167.

    Google Scholar 

  48. Calhorda, M. J.; Veiros, L. F.J. Organomet. Chem. 1994,478 37, and references cited therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciriano, M.A., Dias, A.R., Nunes, P.M. et al. Energetics of the oxidative addition of I2 to [Ir(Μ-L)(CO)2]2 (L=StBu, 3,5-Me2pz,7-aza) complexes. X-ray structures of Ir(Μ-StBu)(I)(CO)2]2 and [Ir(Μ-3,5-Me2pz)(I)(CO)2]2 . Struct Chem 7, 337–354 (1996). https://doi.org/10.1007/BF02275160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02275160

Key words

Navigation