Skip to main content
Log in

On the mechanism of the selective catalytic reduction of NO to N2 by H2 over Ru/MgO and Ru/Al2O3 catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Steady-state and transient kinetic experiments were performed in a versatile microreactor flow set-up with magnesia- and alumina-supported ruthenium catalysts in order to elucidate the mechanism of the selective catalytic reduction (SCR) of nitric oxide with hydrogen. Both Ru/MgO and Ru/γ-Al2O3 were found to be highly active catalysts converting NO and H2 into N2 and H2O with selectivities close to 100% at full conversion, although Ru-based catalysts are known to be active in the synthesis of NH3 from N2 and H2. Frontal chromatography experiments with NO at room temperature revealed that NO and its dissociation products displace adsorbed atomic hydrogen (H−*) almost completely from hydrogen-precovered Ru surfaces. Obviously, NO and H2 compete for the same adsorption sites, H−* being the weaker bound adsorbate. Temperature-programmed surface reaction (TPSR) experiments in H2 subsequent to NO exposure demonstrated that higher heating rates and lower partial pressures of H2 shift the selectivity from NH3 to N2. Therefore, the coverage of H−* is concluded to govern the branching ratio between the rate of associative desorption of N2 (2N−*→N2 + 2*) and the rate of hydrogenation of N−* (N−* + 3H–* →NH3 + 4*). Finally, the steady-state coverages of N- and O-containing adsorbates were derived by interrupting the SCR reaction and hydrogenating the adsorbates off as NH3 and H2O. By solving the site balance, the Ru surfaces were found to be essentially N2 is attributed to the very low coverage of H−* due to site blocking by a N + O coadsorbate layer, favouring the recombination of N−* instead of its hydrogenation to NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bosch and F. Janssen, Catal. Today 2 (1988) 369.

    Article  CAS  Google Scholar 

  2. A. Hornung, M. Muhler and G. Ertl, Catal. Lett. 53 (1998) 77.

    Article  CAS  Google Scholar 

  3. M. Shelef and H.S. Gandhi, Ind. Eng. Chem. Prod. Res. Dev. 11 (1972) 393.

    Article  CAS  Google Scholar 

  4. G.L. Bauerle, S.C. Wu and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev. 14 (1975) 123.

    Article  CAS  Google Scholar 

  5. K.C. Taylor and R.L. Klimisch, J. Catal. 30 (1973) 478.

    Article  CAS  Google Scholar 

  6. K.C. Taylor, R.M. Sinkevitch and R.L. Klimisch, J. Catal. 35 (1974) 34.

    Article  CAS  Google Scholar 

  7. R.L. Klimisch and K.C. Taylor, Ind. Eng. Chem. Prod. Res. Dev. 14 (1975) 26.

    Article  CAS  Google Scholar 

  8. R.J. Voorhoeve and L.E. Trimble, J. Catal. 38 (1975) 80.

    Article  CAS  Google Scholar 

  9. K. Otto and M. Shelef, Z. Phys. Chem. NF 85 (1973) 308.

    CAS  Google Scholar 

  10. S.L. Matson and P. Harriot, Ind. Eng. Chem. Prod. Res. Dev. 17 (1978) 322.

    Article  CAS  Google Scholar 

  11. M. Uchida and A.T. Bell, J. Catal. 60 (1979) 204.

    Article  CAS  Google Scholar 

  12. F. Rosowski, O. Hinrichsen, M. Muhler and G. Ertl, Catal. Lett. 36 (1996) 229.

    Article  CAS  Google Scholar 

  13. O. Hinrichsen, F. Rosowski, A. Hornung, M. Muhler and G. Ertl, J. Catal. 165 (1997) 33.

    Article  CAS  Google Scholar 

  14. H. Dietrich, K. Jacobi and G. Ertl, J. Chem. Phys. 105 (1996) 8944.

    Article  CAS  Google Scholar 

  15. S. Schwegmann, A.P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi and G. Ertl, Chem. Phys. Lett. 264 (1997) 680.

    Article  CAS  Google Scholar 

  16. C. Nagl, R. Schuster, S. Renisch and G. Ertl, Phys. Rev. Lett. 81 (1998) 3483.

    Article  CAS  Google Scholar 

  17. P.J. Shires, J.R. Cassata, B.G. Mandelik and C.P. van Dijk, US Patent 4,479,925 (1984).

  18. M. Muhler, F. Rosowski, O. Hinrichsen, A. Hornung and G. Ertl, Stud. Surf. Sci. Catal. 101 (1996) 317.

    Article  CAS  Google Scholar 

  19. F. Rosowski, A. Hornung, O. Hinrichsen, D. Herein, M. Muhler and G. Ertl, Appl. Catal. A 151 (1997) 443.

    Article  CAS  Google Scholar 

  20. R.A. Dalla Betta, J. Catal. 34 (1974) 57.

    Article  CAS  Google Scholar 

  21. M. Muhler, F. Rosowski and G. Ertl, Catal. Lett. 24 (1994) 317.

    Article  CAS  Google Scholar 

  22. O. Hinrichsen, A. Hornung and M. Muhler, Chem. Eng. Technol. 22 (1999) 1039.

    Article  CAS  Google Scholar 

  23. T. Zambelli, J. Wintterlin, J. Trost and G. Ertl, Science 273 (1996) 1688.

    CAS  Google Scholar 

  24. R. Burch, P.J. Millington and A.P. Walker, Appl. Catal. B 4 (1994) 65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornung, A., Muhler, M. & Ertl, G. On the mechanism of the selective catalytic reduction of NO to N2 by H2 over Ru/MgO and Ru/Al2O3 catalysts. Topics in Catalysis 11, 263–270 (2000). https://doi.org/10.1023/A:1027281932511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027281932511

Navigation