Skip to main content
Log in

Oxidativer Metabolismus von Phagozyten: Physikochemische Grundlagen und klinische Relevanz

Oxidative metabolism of phagocytes: Physicochemical events and clinical relevance

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The microbicidal activity of phagocytes is primarily dependent upon two intracellular processes: degranulation and respiratory burst. The latter one is associated with a partial reduction of molecular oxygen leading to the production of highly reactive oxydizing agents with microbicidal activity. Since an efficiant intracellular antimicrobial function of phagocytes is mainly based on the intracellular process of fusion of lysosomes with the phagocytic vesicles and the production of highly reactive oxygen radicales, disturbances of both these events will cause increased susceptibility against microorganisms and in most of the cases severe infections.

Zusammenfassung

Die mikrobizide Aktivität von Phagozyten beruht primär auf zwei intracellulären Prozessen: Degranulation und Stimulierung des cellulären oxidativen Metabolismus. Der während der Phagozytose aktivierte oxidative Metabolismus ist mit einer partiellen Reduktion des molekularen Sauerstoffs verbunden und führt zur Bildung hochreaktiver Oxidationsmittel mit mikrobizider Wirkung. Da eine effiziente intracelluläre antimikrobielle Funktion der Phagozyten sowohl vom intracellulären Vorgang der Verschmelzung der Lysosomen mit den phagozytischen Vakuolen als auch von der Bildung von Sauerstoffradikalen abhängig ist, führen Störungen der beiden Prozesse zu einer erhöhten Infektanfälligkeit mit zum Teil ernster klinischer Symptomatik.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Zakhireh B, Block LH, Root RK (1978) Neutrophil function and host resistance. Infection 7:88–97

    Google Scholar 

  2. Goldstein IM, Roos D, Kaplan HB (1975) Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest 56:1155–1163

    PubMed  Google Scholar 

  3. Romeo D, Zabucchi G, Rossi F (1977) Surface modulation of oxidative metabolism of polymorphonuclear leukocytes. In: Rossi F, Patriarca P, Romeo D (eds) Movement, metabolisms and bactericidal mechanisms of phagocytes. Piccin Medical Books, London, pp 153–174

    Google Scholar 

  4. Goldstein IM, Cerqueira M, Lind S, Kaplan H (1977) Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J Clin Invest 59:249–254

    PubMed  Google Scholar 

  5. Root RK, Metcalf JA (1977) H2O2 release from human granulocytes during phagocytosis. J Clin Invest 60:1266–1279

    PubMed  Google Scholar 

  6. Root RK, Metcalf JA, Oshino N, Chance B (1975) H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation and some regulating factors. J Clin Invest 55:945–955

    PubMed  Google Scholar 

  7. Klebanoff SJ (1975) Antimicrobial mechanisms of neutrophilic polymorphnuclear leukocytes. Semin Hematol 12:117–142

    PubMed  Google Scholar 

  8. Bainton DF, Farquhar MG (1968) Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol 39:299–317

    PubMed  Google Scholar 

  9. Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  Google Scholar 

  10. Klebanoff SJ (1967) Iodination of bacteria: a bactericidal mechanism. J Exp Med 126:1063–1078

    PubMed  Google Scholar 

  11. Zgliczynski JM, Stelmaszynska T, Ostrowski W (1968) Myeloperoxidase of human leukemic leukocytes: oxidation of amino acids in the presence of hydrogen peroxide. Eur J Biochem 4:540–547

    PubMed  Google Scholar 

  12. Klebanoff SJ (1970) Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes. Science 169:1095–1097

    PubMed  Google Scholar 

  13. Tauber AI, Babior BM (1977) Evidence for hydrocyl radical production by human neutrophils. J Clin Invest 60:374–379

    PubMed  Google Scholar 

  14. Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional: the generation of hydroxyl radical by xanthine oxidase. J Biol Chem 245:4641–4646

    PubMed  Google Scholar 

  15. Klebanoff SJ (1975) Antimicrobial systems of the polymorphonuclear leukocyte. In: Bellanti JA, Dayton DH (eds) The phagocytic cell in host resistance. Raven Press, New York, pp 45–60

    Google Scholar 

  16. Baehner RL (1972) Disorders of leukocytes leading to recurrent infection. Pediat Clin North Am 19:935–956

    Google Scholar 

  17. Nicholls P, Schoubaum GR (1963) Catalases. In: Boyer PD, Lardy H, Myrback K (eds) The Enzymes, 2nd edn. Academic Press, New York, pp 198–200

    Google Scholar 

  18. McCord JM, Fridovich I (1978) The biology and pathology of oxygen radicals. Ann Int Med 89:122–127

    PubMed  Google Scholar 

  19. Mandell GL (1974) Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect Immunol 9:337–341

    Google Scholar 

  20. Spitznagel JK (1977) Bactericidal mechanisms of the granulocyte. In: Greenwalt TJ, Jamieson GA (eds) The granulocyte function and clinical utilization. Alan R Liss Inc, New York, pp 103–139

    Google Scholar 

  21. Janeway CA, Craig J, Davidson M, Downey W, Giatlin D, Sullivan JC (1954) Hypergammaglubulinemia associated with severe recurrent and chronic non-specific infection. Am J Dis Child 88:388–392

    Google Scholar 

  22. Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46:1422–1432

    PubMed  Google Scholar 

  23. Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155:835–836

    PubMed  Google Scholar 

  24. Windhorst DB, Page AR, Holmes B, Quie PG, Good RA (1968) The pattern of genetic transmission of the leukocyte defect in fatal granulomatous disease of childhood. J Clin Invest 47:1026–1034

    PubMed  Google Scholar 

  25. Thompson EN, Cope WA, Chandra RK, Soothill JF (1969) Leukocyte abnormality in both parents of a patient with chronic granulomatous disease. Lancet 1:799–800

    PubMed  Google Scholar 

  26. Johnston RB jr, Baehner RL (1971) Chronic granulomatous disease: correlation between pathogenesis and clinical findings. Pediatrics 48:730–739

    PubMed  Google Scholar 

  27. Wolfson JJ, Quie PG, Laxdal SD, Good RA (1968) Roentgenologic manifestations in children with a genetic defect of polymorphonuclear leukocyte function. Radiology 91:37–48

    PubMed  Google Scholar 

  28. Kaplan EL, Laxdal T, Quie PG (1968) Studies of polymorphonuclear leukocytes from patients with chronic granulomatous disease of childhood: bactericidal capacity for streptococci. Pediatrics 41:591–599

    PubMed  Google Scholar 

  29. Elsbach P, Zucker-Franklin D, Sansaricg C (1969) Increased lecithin synthesis during phagocytosis by normal leukocytes and by leukocytes of a patient with chronic granulomatous disease. N Engl J Med 280:1319–1322

    PubMed  Google Scholar 

  30. Mandell GL, Hook EW (1969) Leukocyte function in chronic granulomatous disease of childhood. Studies on a seventeen year old boy. Am J Med 47:473–483

    PubMed  Google Scholar 

  31. Stossel TP, Root RK, Vaughn M (1972) Phagocytosis in chronic granulomatous disease and the Chediak-Higashi syndrome. N Engl J Med 286:120–123

    PubMed  Google Scholar 

  32. Holmes B, Page AR, Windhorst DB, Quie PG, White JG Good RA (1968) The metabolic pattern and phagocytic function of leukocytes from children with chronic granulomatous disease. Ann NY Acad Sci 155:888–901

    Google Scholar 

  33. Stjernholm RL, Allen RC, Steele RH, Waring WW, Harris JA (1973) Impaired chemiluminescence during phagocytosis of opsonized bacteria. Infect Immunal 7:313–314

    Google Scholar 

  34. Klebanoff SJ, White LR (1969) Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood. N Engl J Med 280:460–466

    PubMed  Google Scholar 

  35. Mandell GL, Hook EW (1969) Leukocyte bactericidal activity in chronic granulomatous disease: correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing. J Bacteriol 100:531–532

    PubMed  Google Scholar 

  36. Shohet SB, Pitt J, Baehner RL, Poplack DG (1974) Lipid peroxidation in the killing of phagocytized pneumococci. Infect Immunol 10:1321–1328

    Google Scholar 

  37. Stossel TP, Mason RJ, Smith AL (1974) Lipid peroxidation by human blood phagocytes. J Clin Invest 54:638–645

    PubMed  Google Scholar 

  38. Curnutte JT, Kipnes RS, Babior BM (1975) Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease. N Engl J Med 293:628–632

    PubMed  Google Scholar 

  39. Lehrer RI (1972) Functional aspects of a second mechanism of candidacidal activity by human neutrophils. J Clin Invest 51:2566–2572

    PubMed  Google Scholar 

  40. Hohn DC, Lehrer RI (1975) NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest 55:707–713

    PubMed  Google Scholar 

  41. Holmes B, Park BH, Malawista SE, Quie PG, Nelson DL, Good RA (1970) Chronic granulomatous disease in females: A deficiency of leukocyte glutathione peroxidase. N Engl J Med 283:217–221

    PubMed  Google Scholar 

  42. Baehner RL, Gilman N, Karnovsky ML (1970) Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J Clin Invest 49:692–700

    PubMed  Google Scholar 

  43. Yoshida A, Stamatoyannopoulos G, Motulsky A (1968) Biochemical genetics of glucose-6-phosphate dehydrogenase variation. Ann NY Acad Sci 155:868–879

    Google Scholar 

  44. Rodey GE, Jacobs HS, Holmes B, McArthur JR, Good RA (1970) Leukocyte G-6-PD levels and bactericidal activity. Lancet 1:355–356

    Google Scholar 

  45. Cooper MR, De Chatelet LR, McCall CE, LaVia MF, Spurr CL, Baehner RL (1972) Complete deficiency of leukocyte glucose-6-phosphat dehydrogenase with defective bactericidal activity. J Clin Invest 51:769–778

    PubMed  Google Scholar 

  46. Holten D, Proscall D, Hsiao-Lin (1976) Regulation of pentose phosphate pathway dehydrogenases by NADP+/NADPH ratios. Biochem Biophys Res Comm 68:436–441

    PubMed  Google Scholar 

  47. Grignaschi VJ, Sperperato AM, Etcheverry MJ, Macario AJL (1963) Un nuevo cuadro citoquimico: Negatividad espontanea de las reacciones de peroxidases oxidases, y lipido en la progenie neutrofila y en los monocitos de nos hermanos. Rev Assoc Med Argent 77:218–225

    Google Scholar 

  48. Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: Role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48:1478–1488

    PubMed  Google Scholar 

  49. Undritz E (1966) Die Alius-Grignaschi-Anomalie: Der erblichkonstitutionelle peroxydase defekt der neutrophilen und monozyten. Blut 14:129–136

    PubMed  Google Scholar 

  50. Breton-Gorius J, Coguin Y, Guichard J (1975) Activities peroxydasiques de certaines granulations des neutrophiles dans deux cas de deficit congenital en myeloperoxydase. CR Acad Sci (Paris) 280:1753–1756

    Google Scholar 

  51. Stendahl O, Lindgren S (1976) Function of granulocytes with deficient myeloperoxidasemediated iodination in a patient with generalized pustular psoriasis. Scand J Haematol 16:144–153

    PubMed  Google Scholar 

  52. Lehrer RI, Hanifin J, Cline MJ (1969) Defective bactericidal activity in myeloperoxidase-deficient human neutrophils. Nature 223:78–79

    PubMed  Google Scholar 

  53. Blume RS, Wolff SM (1972) The Chediak-Higashi syndrome: studies in four patients and a review of literature. Medicine 51:247–280

    PubMed  Google Scholar 

  54. Wolff SM, Dale DC, Clark RA, Root RK, Kimball HR (1972) The Chediak-Higashi syndrome: studies of host defenses. Ann Int Med 76:293–306

    PubMed  Google Scholar 

  55. Root RK, Rosenthal AS, Balestra DJ (1972) Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi syndrome leukocytes. J Clin Invest 51:649–665

    PubMed  Google Scholar 

  56. Oliver JM, Zurier RB, Berlin RD (1975) Concanavalin A cap formation on polymorphonuclear leukocytes of normal and beige (Chediak-Higashi) mice. Nature 253:471–473

    PubMed  Google Scholar 

  57. Estensen RD, Hill HR, Quie PG, Hogan N, Goldberg ND (1973) Cyclic GMP and cell movement. Nature 245:458–460

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, L.H., Lüthy, R. & Siegenthaler, W. Oxidativer Metabolismus von Phagozyten: Physikochemische Grundlagen und klinische Relevanz. Klin Wochenschr 58, 1271–1281 (1980). https://doi.org/10.1007/BF01478136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01478136

Key words

Schlüsselwörter

Navigation