Skip to main content
Log in

Regulation and localization of organic osmolytes in mammalian kidney

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Four organic small molecules belonging to the chemical groups of trimethylamines (betaine and glycerophosphorylcholine) and polyols (sorbitol and inositol) have been shown to act as organic osmolytes in the kidney. When measured along the corticopapillary axis, each exhibits a specific distribution pattern, indicating a specific localization and function. Studying their behaviour under vasopressin treatment in diabetes insipidus rats and after insulin treatment in diabetes mellitus rats confirmed this conclusion: AVP led to a steady increase of sorbitol and glycerophosphorylcholine over 7 days with no effect on inositol levels. Insulin treatment of diabetic rats, on the other hand, decreased sorbitol with a concomitant increase in glycerophosphorylcholine, again without any effect on tubular inositol concentrations. From this and in vitro studies it can be concluded that both hormones act by indirect mechanisms which alter interstitial osmolality. This in turn leads to a change in tubular osmolyte synthesis, uptake and release rates. In addition, the concentrations of the respective precursors glucose and choline influence the formation rates of sorbitol and betaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnasco S, Balaban R, Fales H, Yang YM, Burg MB (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261:5872–5877

    Google Scholar 

  2. Bagnasco S, Uchida S, Balaban R, Kador P, Burg M (1987) Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci USA 84:1718–1720

    Google Scholar 

  3. Beck FX, Dörge A, Thurau K, Guder WG (1990) Cell osmoregulation in the counter current system of the renal medulla: The role of organic osmolytes. In: Beyenbach KW (ed) Cell Volume Regulation. Comp Physiol, Vol. 4. Karger, Basel, pp 132–158

    Google Scholar 

  4. Blumenfeld J, Hebert S, Heilig C, Baischi J, Stromski M, Gullans S (1989) Organic osmolytes in inner medulla of the Brattleboro rat: effect of ADH and dehydration. Am J Physiol 256:F916-F922

    Google Scholar 

  5. Burg MB (1988) Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu. Kidney Int 33:635–641

    Google Scholar 

  6. Burg MB, Kador PF (1988) Sorbitol, osmoregulation and the complications of diabetes. J Clin Invest 81:635–640

    Google Scholar 

  7. Cowley BD, Ferraris JD, Carper D, Burg MB (1990) In vivo osmoregulation of aldose reductase mRNA, protein, and sorbitol in renal medulla. Am J Physiol 258:F154-F161

    Google Scholar 

  8. Grossmann EB, Hebert SC (1989) Renal inner medullary choline dehydrogenase activity: characterization and modulation. Am J Physiol 256:F107-F112

    Google Scholar 

  9. Grunewald W, Kinne RKH (1989) Sorbitol metabolism in inner medullary collecting duct cells of diabetic rats. Pflügers Arch 414:346–350

    Google Scholar 

  10. Guder WG, Schleicher E, Schmolke M (1990) Perturbation of renal polyols and glycerophosphorylcholine in streptozotocin diabetes and insulin treatment. Diabetologia (submitted)

  11. Guder WG, Schmolke M, Lefrank S, Beck FX (1990) Specific changes of renal organic osmolyte pattern in different diuretic states. Renal Physiol Biochem 13:166–177 (abstract)

    Google Scholar 

  12. Hebert SC (1990) Rapid cell volume regulation. In: Proc XIth Int Congr Nephrol. Springer, Tokyo (in press)

    Google Scholar 

  13. Jamison RL, Kriz W (1982) Urinary concentrating mechanism. Oxford University Press, Oxford

    Google Scholar 

  14. Law RO (1990) Adaptive volume responses of renal papillary cells exposed to hyperosmolal media. Renal Physiol Biochem 13:171–172

    Google Scholar 

  15. Nakanishi TR, Burg MB (1989) Osmoregulatory fluxes of myo-inositol and betaine in renal cells. Am J Physiol 258:C964-C970

    Google Scholar 

  16. Sands JM, Terada Y, Bernard LM, Knepper MA (1989) Aldose reductase activities in microdissected rat renal tubule segments. Am J Physiol 256:F563-F569

    Google Scholar 

  17. Schmolke M, Guder WG (1989) Metabolic regulation of organic osmolytes in tubules from rat renal inner and outer medulla. Renal Physiol Biochem 12:347–358

    Google Scholar 

  18. Schmolke M, Beck FX, Guder WG (1989) Effect of antidiuretic hormone on renal organic osmolytes in Brattleboro rats. Am J Physiol 257:F732-F737

    Google Scholar 

  19. Schmolke M, Bornemann A, Guder WG (1990) Polyol determination along the rat nephron. Biol Chem Hoppe-Seyler 371:909–916

    Google Scholar 

  20. Schmolke M, Bornemann A, Guder WG (1990) Distribution and regulation of organic osmolytes along the nephron. In: Koide H, Endou H, Kurokawa H (eds) Cell Biology of Nephron Heterogeneity: Fine Structure and Functions. Karger, Basel (in press)

    Google Scholar 

  21. Völkl H, Paulmichl M, Lang F (1988) Cell volume regulation in renal cortical cells. Renal Physiol Biochem 11:158–173

    Google Scholar 

  22. Wirthensohn G, Lefrank S, Schmolke M, Guder WG (1989) Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256:F128-F135

    Google Scholar 

  23. Wirthensohn G, Lefrank S, Guder WG, Beck FX (1987) Studies of the role of glycerophosphorylcholine and sorbitol in renal osmoregulation. In: Kovacevic Z, Guder WG (eds) Molecular Nephrology: biochemical aspects of kidney function, de Gruyter, Berlin New York, pp 321–327

    Google Scholar 

  24. Wirthensohn G, Guder WG (1982) Studies on renal choline metabolism and phosphatidylcholine synthesis. In: Morel F (ed) Biochemistry of kidney function. Elsevier, Amsterdam New York, pp 119–128

    Google Scholar 

  25. Wolff SD, Yancey PH, Stanton TS, Balaban RS (1989) A simple HPLC method for quantitating the major organic solutes of the renal medulla. Am J Physiol 256:F954-F956

    Google Scholar 

  26. Yancey P, Clark M, Hand S, Bowlus R, Somero G (1982) Living with waters stress: evolution of osmolyte systems. Science 217:1214–1222

    Google Scholar 

  27. Yancey PH, Burg MB (1989) Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol 257:F602-F607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guder, W.G., Beck, F.X. & Schmolke, M. Regulation and localization of organic osmolytes in mammalian kidney. Klin Wochenschr 68, 1091–1095 (1990). https://doi.org/10.1007/BF01798058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01798058

Key words

Navigation