Skip to main content
Log in

Clostridium viride sp. nov., a strictly anaerobic bacterium using 5-aminovalerate as growth substrate, previously assigned to Clostridium aminovalericum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Strain T2–7, a 5-aminovalerate-fermenting bacterium previously classified as Clostridium aminovalericum, was further characterized, both physiologically and phylogenetically. Comparative sequencing analysis of the almost complete 16S rDNA revealed that strain T2–7 forms a distinct lineage within a phylogenetically coherent cluster of gram-positive bacteria currently assigned to the genus Clostridium. Strain T2–7 grew with 5-aminovalerate, 5-hydroxyvalerate, 4-hydroxybutyrate, vinylacetate, and crotonate, and required yeast extract and l-cysteine for growth. Other substrates were not utilized. The fermentation products, depending on the growth substrate, were ammonia, acetate, propionate, butyrate, and valerate. Sulphur was reduced by a mechanism not linked to energy conservation. Other acceptors were not utilized. Cells were gram-positive pointed-ended ovals, motile by means of two subpolar flagella, and possessed a gram-positive cell wall structure with an S-layer of hexagonally arranged subunits of 18.5 nm diameter. The DNA mol% G+C was 41.5. Strain T2–7 (DSM 6836) is proposed as the type strain of a new species, Clostridium viride sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader J, Günther H, Schleicher E, Simon H, Pohl S, Mannheim W (1980) Utilization of (E)-2-butenoate (crotonate) by Clostridium kluyveri and some other Clostridium species. Arch Microbiol 125:159–165

    Article  CAS  PubMed  Google Scholar 

  • Barker HA, D'Ari L, Kahn J (1987) Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum. J Biol Chem 262:8994–9003

    CAS  PubMed  Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132

    CAS  PubMed  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceangr 14:454–458

    CAS  Google Scholar 

  • Cook GM, Janssen PH, Morgan HW (1991) Endospore formation by Thermoanaerobium brockii HTD4. System Appl Microbiol 14:240–244

    Google Scholar 

  • Cote RJ, Gherna RL (1994) Nutrition and media. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, DC, pp 155–178

    Google Scholar 

  • De Rijk P, Neefs JM, Van de Peer Y, De Wachter R (1992) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 20:2075–2089

    PubMed  Google Scholar 

  • Dörner C, Schink B (1990) Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-,3-, or 4-hydroxybutyrate. Arch Microbiol 154:342–348

    Article  PubMed  Google Scholar 

  • Dyer JK, Costilow RM (1968) Fermentation of ornithine by Clostridium sticklandii. J Bacteriol 96:1617–1622

    CAS  PubMed  Google Scholar 

  • Eikmanns U, Buckel W (1990) Properties of 5-hydroxyvalerate CoA-transferase from Clostridium aminovalericum. Biol Chem Hoppe Seyler 371:1077–1082

    CAS  PubMed  Google Scholar 

  • Eikmanns U, Buckel W (1991a) Crystalline green 5-hydroxyvaleryl-CoA dehydratase from Clostridium aminovalericum. Eur J Biochem 197:661–668

    Article  CAS  PubMed  Google Scholar 

  • Eikmanns U, Buckel W (1991b) A green 2,4-pentadienoyl-CoA reductase from Clostridium aminovalericum. Eur J Biochem 198:263–266

    Article  CAS  PubMed  Google Scholar 

  • Eikmanns U, Buta C, Buckel W, Pai EF (1994) Crystallization and preliminary X-ray diffraction study of the green flavoenzyme 5-hydroxyvaleryl-CoA dehydratase/dehydrogenase from Clostridium aminovalericum. Proteins 19:269–271

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hardman JK, Stadtman TC (1960) Metabolism of ω-amino acids. II. Fermentation of δ-aminovaleric acid by Clostridium aminovalericum n. sp. J Bacteriol 79:549–552

    CAS  PubMed  Google Scholar 

  • Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium-nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 1800–1866

    Google Scholar 

  • Janssen PH (1991) Isolation of Clostridium propionicum strain 19acry3 and further characteristics of the species. Arch Microbiol 155:566–571

    CAS  PubMed  Google Scholar 

  • Janssen PH, Harfoot CG (1990) Isolation of a Citrobacter species able to grow on malonate under strictly anaerobic conditions. J Gen Microbiol 136:1037–1042

    CAS  PubMed  Google Scholar 

  • Janssen PH, Morgan HW (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96:213–218

    Article  CAS  Google Scholar 

  • Johnson JL, Francis BS (1975) Taxonomy of the clostridia: ribosomal ribonucleic acid homology among the species. J Gen Microbiol 88:229–244

    CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  • Karn J, Brenner S, Barnett L, Cesareni G (1980) Novel bacteriophage λ cloning vector. Proc Natl Acad Sci USA 77:5172–5176

    CAS  PubMed  Google Scholar 

  • Krumböck M, Conrad R (1991) Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol Ecol 85:247–256

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEBA: molecular evolutionary genetics analysis, version 1.0. Pennsylvania State University, University Park, USA

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lawson PA, Llop-Perez P, Hutson RA, Hippe H, Collins MD (1993) Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiol Lett 113:87–92

    CAS  PubMed  Google Scholar 

  • Liesack W, Bak F, Freft J-U, Stackebrandt E (1994) Holophaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90

    CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  PubMed  Google Scholar 

  • Magee CM, Rodeheaver G, Egerton MT, Edlich RF (1975) A more reliable Gram staining technic for diagnosis of surgical infections. Am J Surgery 130:341–346

    Article  CAS  Google Scholar 

  • Mead GC (1971) The amino acid-fermenting clostridia. J Gen Microbiol 67:47–56

    CAS  PubMed  Google Scholar 

  • Messner P, Hollaus F, Sleytr U (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J System Bacteriol 34:202–210

    Google Scholar 

  • Olsen GJ, Overbeek R, Larsen N, Marsh TL, McCaughey MJ, Maciukenas MA, Kuan WM, Macke TJ, Woese CR (1992) The ribosomal data base project. Nucleic Acids Res 20:2199–2200

    CAS  PubMed  Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J System Bacteriol 28:283–288

    CAS  Google Scholar 

  • Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Meth 4:303–306

    Article  Google Scholar 

  • Rainey FA, Ward NL, Morgan HW, Toalster R, Stackebrandt E (1993) Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772–4779

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis V (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Stickland LH (1935) XXXV. Studies on the metabolism of strict anaerobes (genus Clostridium). II. The reduction of proline by Cl. sporogenes. Biochem J 29:288–290

    CAS  Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (ed) International review of biochemistry, vol 21. Microbial biochemistry. University Park Press, Baltimore, pp 1–47

    Google Scholar 

  • Thauer RK, Jungermann K, Wenning J, Decker K (1968) Characterization of crotonate grown Clostridium kluyveri by its assimilatory metabolism. Arch Microbiol 64:125–129

    CAS  Google Scholar 

  • Widdel F, Hansen TA (1992) The dissimilatory sulfate-and sulfurreducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 583–624

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Janssen.

Additional information

Dedicated to H. A. Barker on the occasion of his 87th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckel, W., Janssen, P.H., Schuhmann, A. et al. Clostridium viride sp. nov., a strictly anaerobic bacterium using 5-aminovalerate as growth substrate, previously assigned to Clostridium aminovalericum . Arch. Microbiol. 162, 387–394 (1994). https://doi.org/10.1007/BF00282102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282102

Key words

Navigation