Skip to main content
Log in

Lipopolysaccharide ofRhodospirillum salinarum 40: structural studies on the core and lipid A region

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The structural elucidation of lipid A of the cell wall lipopolysaccharide (LPS) ofRhodospirillum salinarum 40 by chemical methods and laser desorption mass spectrometry revealed the presence of a mixed lipid A composed of three different 1,4 bisphosphorylated β(1→6)-linked backbone hexosaminyl-hexosamine disaccharides, i.e. those composed of GlCN→GlcN, 2,3-diamino-2,3-dideoxy-d-Glc-(DAG)→DAG, and DAG→GlcN. Lipid A ofR. salinarum contained preferentially 3-OH-18:0 and 3-OH-14:0 as amide-linked andcisΔ11-18:1 and c19:0 as ester-linked fatty acids. The mass spectra of the liberated acyl-oxyacyl residues proved the concomitant presence of 3-O-(cisΔ11-18:1)-18:0 and 3-O-(c19:0)-14:0 as the predominating diesters in this mixed lipid A. The glycosidically linked and the ester-linked phosphate groups of the backbone disaccharide were neither substituted by ethanolamine phosphorylethanolamine, nor by 4-amino-4-deoxy-l-arabinose, in contrast to most of the enterobacterial lipid As. In the core oligosaccharide fraction, a HexA (1→4)HexA(1→5)Kdo-trisaccharide was identified by methylation analysis. The terminal HexA (hexuronic acid) is possibly 4-OMe-GalA, a component described here as an LPS constituent for the first time. LPS ofR. salinarum showed a lethality in C57BL/10 ScSN (LPS-responder)-mice) of an order of 10−1–10−2 of that reported forSalmonella abortus equi LPS, and it was also capable of inducing TNFα and IL6 in macrophages of C57BL/10ScSN mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAS :

Atomic absorption spectroscopy

c19:0 cis-11, 12:

Methylene-octadecanoic acid

DAG :

2,3-Diamino-2,3-dideoxy-d-glucose

DMDS :

Dimethyldisulfide

DOC-PAGE :

Deoxycholate-polyacrylamide gel electrophoresis

EI-MS :

Electron impact mass spectrometry

GalA :

Galacturonic acid

GlcA :

Glucuronic acid

GC-MS :

Combined gas liquid chromatography-mass spectrometry

GlcN :

d-Glucosamine

HexA :

Hexuronic acid

IL1 :

Interleukin 1

IL6 :

Interleukin 6

Kdo :

3-Deoxy-d-manno-octulosonate

LD-MS :

Laser desorption mass spectrometry

LPS :

Lipopolysaccharide

MTT :

3-(4,5-Dimethlythiazol-2-yl)-2,5-diphenyltetrazoliumbromide

4-OMe :

GalA 4-O-methylgalacturonic acid

PITC :

Phenyl isothiocyanate

TNFα :

Tumor necrosis factor α

References

  • Batley M, Packer N, Redmond, JW (1985) Analytical studies of lipopolysaccharides and its derivatives fromSalmonella minnesota R595. I. Phosphorus magnetic resonance spectra. Biochim Biophys Acta 821: 179–194

    Article  CAS  Google Scholar 

  • Bhat UR, Krishnaiab BS, Carlson RW (1991) Re-examination of the structures of the lipopolysaccharide core oligosaccharides fromRhizobium leguminosarum biovarphaseoli. Carbohydr Res 220:219–227

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg K, Mayer H, Koch MHJ, Rietschel ET, Seydel U (1993) Influence of the supramolecular structure of free lipid A on its biological activity, Eur J Biochem 218:555–563

    Article  PubMed  CAS  Google Scholar 

  • Choma A, Russa R, Mayer H, Lorkiewicz Z (1987) Chemical analysis ofAzospirillum, lipopolysaccharides. Arch Microbiol 146:341–345

    Article  CAS  Google Scholar 

  • Din ZZ, Mukerjee P, Kastowsksy M, Takayama K (1993) Effect of pH on solubility and ionic state of lipopolysaccharide obtained from the deep rough mutant ofEscherichia coli. Biochemistry 32:4579–4586

    Article  PubMed  CAS  Google Scholar 

  • Drews G (1981)Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130: 325–327

    Article  CAS  Google Scholar 

  • Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond, location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four lepidoptera, J Chem Ecol 11: 265–277

    Article  CAS  Google Scholar 

  • Evers D, Weckesser J, Drews G (1984) Protein on the cell surface of the moderately halophilic phototrophic bacteriumRhodospirillum salexigens. J Bacteriol 160:107–111

    PubMed  CAS  Google Scholar 

  • Evers D, Weckesser J, Jürgens UJ (1986) Chemical analyses on cell envelope polymers of the halophilic, phototrophicRhodospirillum salexigens. Arch Microbiol 145:245–258

    Article  Google Scholar 

  • Freudenberg MA, Galanos C (1991) Tumor necrosis factor alpha mediates lethal activity of killed gram-negative and gram-positive bacteria ind-galactosamine-treated mice. Infect Immun 59: 2110–2115

    PubMed  CAS  Google Scholar 

  • Galanos C, Lüderitz O, Westphal O (1979) Preparation and properties of a standardized lipopolysaccharide fromSalmonella abortus equi (novo-pyrexal). Zentralbl Bakteriol 243:226–244

    CAS  Google Scholar 

  • Galanos C, Lüderitz, O, Rietschel ET (1985) Synthetic and naturalEscherichia coli free lipid A express identical endotoxic activities. Eur J Biochem 148:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (1964) A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethylsulfoxide. J Biochem 55:205–208

    PubMed  CAS  Google Scholar 

  • Helander IM, Lindner B, Brade H (1988) Chemical structure of the lipopolysaccharide ofHaemophilus influenzae strain I-69 Rd/B+. Eur J Biochem 177:483–492

    Article  PubMed  CAS  Google Scholar 

  • Holst O, Weckesser JM Mayer H (1983) Co-extraction of lipopolysaccharide and an ornithine-containing lipid fromRhododomicrobium vannielii. FEMS Microbriol Lett 19:33–36

    Article  CAS  Google Scholar 

  • Imhoff JF, Kushner DJ, Kushwaha SC, Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150:1192–1201

    PubMed  CAS  Google Scholar 

  • Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2, Academic Press, New York, pp 287–363

    Google Scholar 

  • Kickhöfen B, Warth R (1968) Eine Trennkammer für die Hochspannungselektrophorese nach dem Michl’schen Prinzip, J Chromatogr 33:558–560

    Article  Google Scholar 

  • Kochetkov NK, Chizhov OS (1966) Mass spectrometry of carbohydrate derivatives. Adv Carbohydr Chem 21:39–94

    CAS  Google Scholar 

  • Kompantseva E, Gorlenko VM (1984) A new species of moderately halophilic purple bacteriumRhodospirillum mediosalinum sp. nov. Mikrobiologiia 53:954–961

    CAS  Google Scholar 

  • Komuro T, Galanos C (1988) Analysis ofSalmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 450:381–387

    Article  PubMed  CAS  Google Scholar 

  • Lindberg B (1972) Methylation analysis of polysaccharides. Methods Enzymol 28:178–195

    Article  Google Scholar 

  • Loppnow H, Libby P, Freudenberg M, Krauss JH, Weckesser J, Mayer H (1990) Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxicRhodobacter capsulatus LPS. Infect Immun 58:3743–3750

    PubMed  CAS  Google Scholar 

  • Lowry OH, Roberts NR, Kuner KY, Wu NL, Farr AL (1954) The quantitative histochemistry of brain. 1. Chemical methods.J Biol Chem 207:1–17

    PubMed  CAS  Google Scholar 

  • Mack EE, Mandelco L, Woese CR, Madigan MT (1993)Rhodospirillum sodomense, sp. nov., a Dead SeaRhodospirillum species. Arch Microbiol 160; 363–371

    Article  CAS  Google Scholar 

  • Masoud H, Mayer H, Kontrohr T, Holst O, Weckesser J (1991) The structure of the core region of the lipopolysaccharide fromRhodocyclus gelatinosus Dr2. Syst Appl Microbiol 14:222–227

    CAS  Google Scholar 

  • Mayer H, Campos-Portuguez SA, Busch M, Urbanik-Sypniewska T, Bhat UR (1990a) Lipid A variants-or, how constant are the constant regions in lipopolysaccharide? In: Nowotny A, Spitzer JJ, Ziegler EJ (eds) Cellular and molecular aspects of endotoxin reactions. Excerpta Medica, Amsterdam New York Oxford, pp 111–120

    Google Scholar 

  • Mayer H, Krauss JH, Yokota A, Weckesser J (1990b) Natural variants of lipid A. In: Friedman H, Klein TW, Nakano M, Nowotny A (eds) Endotoxin. Plenum New York, pp 45–70

    Google Scholar 

  • Meissner J, Pfennig N, Krauss JH, Mayer H, Weckesser J (1988) Lipopolysaccharides ofThiocystis violaceae, Thiocapsa pfennigii, andChromatium tepidum, species of the family Chromatiaceae. J Bacteriol 170:3217–3222

    PubMed  CAS  Google Scholar 

  • Moran AP, Zähringer U, Seydel U, Scholz D, Stütz P, Rietschel ET (1991) Structural analysis of the lipid A component ofCampylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide, Eur J Biochem 198:459–469

    Article  PubMed  CAS  Google Scholar 

  • Mort AJ, Parker S, Kuo MS (1983) Recovery of methylated saccharides from methylation reaction mixtures using Sep-Pak C18 Cartridge. Anal Biochem 133:380–384

    Article  PubMed  CAS  Google Scholar 

  • Moss CW, Lambert-Fair MA (1989) Location of double bonds in monounsaturated fatty acids ofCampylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. J Clin Microbiol 27:1467–1470

    PubMed  CAS  Google Scholar 

  • Nissen H, Dundas ID (1984)Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern, Arch Microbiol 138:251–256

    Article  CAS  Google Scholar 

  • Old LJ (1988) Der Tumor-Nekrose-Faktor. Spektrum Wiss 7:42–51

    Google Scholar 

  • Pietsch K, Weckesser J, Fischer U, Mayer H (1990) The lipopolysaccharides ofRhodospirillum rubrum, Rhodospirillum molischianum, andRhodopila globiformis. Arch Microbiol 154: 433–437

    Article  CAS  Google Scholar 

  • Rau H, Sakane T, Yokota A, Mayer H (1993) Isolation and chemical characterization of lipopolysaccharides from fourAquaspirillum species (A. itersonii subsp.nipponicum IFO 13615,A. polymorphum IFO 13961,A. aquaticum IFO 14918,A. metamorphum IFO 13960 andA. metamorphum mutant strain 12–3) J Gen Appl Microbiol 39:547–557

    CAS  Google Scholar 

  • Rietschel ET, Brade L (1993) Bakterielle Endotoxine. Spektrum Wiss 1:34–42

    Google Scholar 

  • Rietschel ET, Brade L, Linder B, Zähringer U (1992) Biochemistry of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides, vol 1. Molecular biochemistry and cellular biology. CRC Press, Boca Raton, pp 3–41

    Google Scholar 

  • Roppel J, Mayer H, Weckesser J (1975) Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides ofRhodopseudomonas viridis andRhodopseudomonas palustris, Carbohydr Res 40:31–40

    Article  PubMed  CAS  Google Scholar 

  • Rosner MR, Khorana HG, Satterthwait AC (1979) The structure of lipopolysaccharide from a heptose-less mutant ofEscherichia coli K-12. 2. The application of31P NMR spectroscopy. J Biol Chem 254:5918–5925

    CAS  Google Scholar 

  • Russa R, Urbanik-Sypniewska T, Choma A, Mayer H (1991) Identification of 3-deoxy-lyxo-2-heptulosaric acid in the core region of lipopolysaccharides from Rhizobiaceae. FEM Microbiol Lett 84:337–344

    Article  CAS  Google Scholar 

  • Seydel U, Lindner B, Wollenweber HW, Rietschel ET (1984a) Structural studies on the lipid A component of enterobacterial lipopolysaccharides by laser desorption mass spectrometry: Iocation of acyl groups at the lipid A backbone. Eur J Biochem 145:505–509

    Article  PubMed  CAS  Google Scholar 

  • Seydel U, Lindner B, Zähringer U, Rietschel ET, Kusumoto S, Shiba T (1984b) Laser dosorption mass spectrometry of synthetic lipid A-like compounds. Biomed Mass Spectrom 11:132–141

    Article  PubMed  CAS  Google Scholar 

  • Seydel U, Labischinski H, Kastowsky M, Brandenburg K (1993) Phase behaviour, supramolecular structure and molecular conformation of lipopolysaccharide. Immunobiology 187:191–211

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38: 321–325

    Article  Google Scholar 

  • Thiele OW, Busse P, Schwinn G (1971) Phosphatide der Brucellen. Z Allgem Mikrobiol 11:249–254

    CAS  Google Scholar 

  • Thiemann B, Imhoff JF (1991) The effect of salt on the lipid composition ofEctothiorhodospira. Arch Microbiol 156:376–384

    Article  CAS  Google Scholar 

  • Tsai CM, Frasch CE (1982) A sensitive silver staining for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  PubMed  CAS  Google Scholar 

  • Weckesser J, Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev 54:143–154

    CAS  Google Scholar 

  • Westphal O, Jann K (1965) Bacterial lipopolysaccharides, extraction with phenol-water and further applications of the procedure, Methods Carbohydr Chem 5:83–91

    CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326

    PubMed  CAS  Google Scholar 

  • Wollenweber HW, Rietschel ET (1990) Analysis of lipopolysaccharide (lipid A) fatty acids, J Microbiol Methods 11:195–211

    Article  CAS  Google Scholar 

  • Wollenweber HW, Broady KW, Lüderitz O, Rietschel ET (1982) The chemical structure of lipid A: demonstration of amidelinked 3-acyloxyacyl residues inSalmonella minnesota Re lipopolysaccharide, Eur J Biochem 124:191–198

    Article  PubMed  CAS  Google Scholar 

  • Zahr M, Fobel B, Mayer H, Imhoff JF, Campos PS, Weckesser J (1992) Chemical composition of the lipopolysaccharides ofEctothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, andEctothiorhodospira halophila, Arch Microbiol 157:499–504

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, H., Seydel, U., Freudenberg, M. et al. Lipopolysaccharide ofRhodospirillum salinarum 40: structural studies on the core and lipid A region. Arch. Microbiol. 164, 280–289 (1995). https://doi.org/10.1007/BF02529962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529962

Key words

Navigation