Skip to main content
Log in

Evidence for the in vivo regulation of glucose 6-phosphate dehydrogenase activity in Hydrogenomonas eutropha H 16 from measurements of the intracellular concentrations of metabolic intermediates

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The inhibition of fructose utilization by whole cells of Hydrogenomonas eutropha H 16, following the addition of hydrogen to the gas phase, has been explained as an inhibition of glucose 6-phosphate dehydrogenase (Blackkolb and Schlegel, 1968a, b).

The intracellular concentrations of glucose 6-phosphate, 6-phosphogluconate, three inhibitors of the enzyme (NADH, ATP and phosphoenolpyruvate) and some related metabolites were measured in cells incubated in the presence and absence of hydrogen.

Inhibition of glucose 6-phosphate dehydrogenase was confirmed by an increase in the glucose 6-phosphate pool and a decrease in the 6-phosphogluconate concentration. The regulatory control is apparently due to a threefold increase in the NADH concentration while the concentrations of the other two inhibitors fell slightly. When the measured intracellular concentrations of intermediates were used in the in vitro assay of glucose 6-phosphate dehydrogenase activity, an almost total inhibition of the dehydrogenase was observed, therefore further regulatory factors must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, W.: CO2-bedürftige Mutanten von Hydrogenomonas H 16. Diss., Universität Göttingen 1970

  • Atkinson, D. E.: Regulation of enzyme function. Ann. Rev. Microbiol. 23, 47–68 (1969)

    Google Scholar 

  • Bächi, B., Ettlinger, L.: Influence of glucose on adenine nucleotide levels and energy charge in Acetobacter aceti. Arch. Mikrobiol. 93, 155–164 (1973)

    Google Scholar 

  • Blackkolb, F., Schlegel, H. G.: Katabolische Repression und Enzymemmung durch molekularen Wasserstoff bei Hydrogenomonas. Arch. Mikrobiol. 62, 129–143 (1968a)

    Google Scholar 

  • Blackkolb, F., Schlegel, H. G.: Regulation der Glucose-6-phosphat-Dehydrogenase aus Hydrogenomonas H 16 durch ATP und NADH2. Arch. Mikrobiol. 63, 177–196 (1968b)

    Google Scholar 

  • Blair, J. McD.: Magnesium, potassium, and the adenylate kinase equilibrium. Magnesium as a feedback signal from the adenine nucleotide pool. Europ. J. Biochem. 13, 384–390 (1970)

    Google Scholar 

  • Bonsignore, A., de Flora, A.: Regulatory properties of glucose 6-phosphate dehydrogenase. In: B. L. Horecker, E. R. Stadtman, Eds., Current topics in cellular regulation, vol. 6, pp. 21–62. New York: Academic Press 1972

    Google Scholar 

  • Chance, B., Williams, G. R.: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol. 17, 65–134 (1956)

    Google Scholar 

  • Chapman, A. G., Fall, L., Atkinson, D. E.: Adenylate energy charge in Escherichia coli during growth and starvation. J. Bact. 108, 1072–1086 (1971)

    Google Scholar 

  • Cook, A. M., Bowien, B.: The fluorimetric determination of metabolic pool sizes in Hydrogenomonas eutropha strain H 16. J. gen. Microbiol. 75, XIX (1973)

    Google Scholar 

  • Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., Wood, W. B.: Microbiology, internat. Edt., pp. 36–42. New York: Harper & Row 1969

    Google Scholar 

  • Estabrook, R. W., Maitra, P. K.: A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Analyt. Biochem. 3, 369–382 (1962)

    Google Scholar 

  • Gottschalk, G.: Verwertung von Glucose durch Hydrogenomonas H 16. II. Cryptisches Verhalten gegenüber Glucose. Arch. Mikrobiol. 49, 96–102 (1964)

    Google Scholar 

  • Gottschalk, G.: Die Verwertung organischer Substrate durch Hydrogenomonas in Gegenwart von molekularem Wasserstoff. Biochem. Z. 341, 260–270 (1965)

    Google Scholar 

  • Gottschalk, G., Eberhardt, U., Schlegel, H. G.: Verwertung von Fructose durch Hydrogenomonas H 16. Arch. Mikrobiol. 48, 95–108 (1964)

    Google Scholar 

  • Gutfreund, H.: Transient and relaxation kinetics of enzyme reactions. Ann. Rev. Biochem. 40, 315–344 (1971)

    Google Scholar 

  • Krebs, H. A.: Die Steuerung von Stoffwechselvorgängen. Endeavour 16, 125–132 (1957)

    Google Scholar 

  • MacNab, R., Moses, V., Mowbray, J.: Evidence for metabolic compartmentation in Escherichia coli. Europ. J. Biochem. 34, 15–19 (1973)

    Google Scholar 

  • Maitra, P. K., Estabrook, R. W.: A fluorimetric method for the enzymic determination of glycolytic intermediates. Analyt. Biochem. 7, 472–484 (1964)

    Google Scholar 

  • Reid, D. F., Frank, H. A.: Isotopic method for estimating microbial cell volumes. J. Bact. 92, 639–644 (1966)

    Google Scholar 

  • Reeves, R. E., Sols, A.: Regulation of Escherichia coli phosphofructokinase in situ. Biochem. biophys. Res. Commun. 50, 459–466 (1973)

    Google Scholar 

  • Rolleston, F. S.: A theoretical background to the use of measured concentrations of intermediates in study of the control of intermediary metabolism. In: B. L. Horecker, E. R. Stadtman, Eds., Current topics in cellular regulation, vol. 5, pp. 47–75. New York: Academic Press 1972

    Google Scholar 

  • Schlegel, H. G., Gottschalk, G., Bartha, R. von: Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature (Lond.) 191, 463–465 (1961b)

    Google Scholar 

  • Schlegel, H. G., Kaltwasser, H., Gottschalk, G.: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209–222 (1961a)

    Google Scholar 

  • Schramm, V. L.: Allosteric AMP nucleosidase (AMPase): Regulation and a proposed metabolic role. Abstracts, 9th International Congress of Biochemistry (1973)

  • Sols, A., Marco, R.: Concentrations of metabolites and binding sites. Implications in metabolic regulation. In: B. L. Horecker, E. R. Stadtman, Eds., Current topics in cellular regulation, vol. 2, pp. 227–273, New York: Academic Press 1970

    Google Scholar 

  • Tunail, N., Schlegel, H. G.: Phosphoenolpyruvate, a new inhibitor of glucose 6-phosphate dehydrogenase. Biochem. biophys. Res. Commun. 49, 1554–1560 (1972)

    Google Scholar 

  • Webb, J. L.: Enzyme and metabolite inhibitors, vol. 1, pp. 383–392. London-New York: Academic Press 1963

    Google Scholar 

  • Wilde, E.: Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch. Mikrobiol. 43, 109–137 (1962)

    Google Scholar 

  • Williamson, J. R., Corkey, B. E.: Assay of intermediates of the citric acid cycle and related compounds by fluorimetric enzyme methods. Meth. Enzymol. 13, 434–513 (1969)

    Google Scholar 

  • Wilson, A. T., Calvin, M.: The photosynthetic cycle. CO2 dependent transients. J. Amer. chem. Soc. 77, 5948–5957 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowien, B., Cook, A.M. & Schlegel, H.G. Evidence for the in vivo regulation of glucose 6-phosphate dehydrogenase activity in Hydrogenomonas eutropha H 16 from measurements of the intracellular concentrations of metabolic intermediates. Arch. Microbiol. 97, 273–281 (1974). https://doi.org/10.1007/BF00403067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403067

Key words

Navigation