Skip to main content
Log in

Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We construct a suspension of Smale's horseshoe diffeomorphism of the two-dimensional disc as a flow in an orientable three manifold. Such a suspension is natural in the sense that it occurs frequently in periodically forced nonlinear oscillators such as the Duffing equation. From this suspension we construct a knot-hòlder or template—a branched two-manifold with a semiflow—in such a way that the periodic orbits are isotopic to those in the full three-dimensional flow. We discuss some of the families of knotted periodic orbits carried by this template. In particular we obtain theorems of existence, uniqueness and non-existence for families of torus knots. We relate these families to resonant Hamiltonian bifurcations which occur as horseshoes are created in a one-parameter family of area preserving maps, and we also relate them to bifurcations of families of one-dimensional ‘quadratic like’ maps which can be studied by kneading theory. Thus, using knot theory, kneading theory and Hamiltonian bifurcation theory, we are able to connect a countable subsequence of “one-dimensional” bifurcations with a subsequence of “area-preserving” bifurcations in a two parameter family of suspensions in which horseshoes are created as the parameters vary. One implication is that infinitely many bifurcation sequences are reversed as one passes from the one dimensional to the area-preserving family: there are no universal routes to chaos!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. I. Arnold [1977] Fund. Anal. Appl. 11 (2) 1–10. Loss of stability of self oscillations close to resonances and versal deformations of equivariant vector fields.

    Google Scholar 

  • V. I. Arnold [1982] ‘Geometrical methods in the theory of ordinary differential equations’, Springer Verlag, Berlin, Heidelberg, New York (Russian original, Moscow, 1977).

    MathSciNet  MATH  Google Scholar 

  • V. I. Arnold & A. Avez [1968] ‘Ergodic Problems of Classical Mechanics’ New York, W. A. Benjamin Inc.

    Google Scholar 

  • J.-P. Babary & C. Mira [1969] C. R. Acad. Sci. Paris 268 Série A, 129–132 Sur un cas critique pour une récurrence autonome du deuxième ordre.

    Google Scholar 

  • R. E. Bedient [1984] Classifying 3-trip Lorenz knots. Preprint, Hamilton College, N.Y.

    Google Scholar 

  • P. Beiersdorfer, J.-M. Wersinger & Y. Treve, Phs. Lett. 96A, 269–272. Topology of the invariant manifolds of period-doubling attractors for some forced nonlinear oscillators.

  • G. D. Birkhoff [1913] Trans. Am. Math. Soc. 14, 14–22, Proof of Poincaré's geometric theorem.

    Google Scholar 

  • G. D. Birkhoff [1927] ‘Dynamical Systems’, A.M.S. Publications, Providence, R.I.

    Google Scholar 

  • J. S. Birman [1975] ‘Braids, Links and Mapping Class Groups’, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • J. Birman & R. F. Williams [1983 a] Topology, 22, 47–82. Knotted periodic orbits in dynamical systems I: Lorenz's equations.

    Google Scholar 

  • J. Birman & R. F. Williams [1983 b] Contemporary Mathematics, 20, 1–60, Knotted periodic orbits in dynamical systems II: knot holders for fibred knots.

    Google Scholar 

  • R. Bowen [1976] ‘On Axiom A Diffeomorphisms’, CBMS Regional Conference Series in Mathematics 35, AMS Publications, Providence, RI.

  • A. Chenciner [1983] Bifurcations de difféomorphismes de R2 au voinsinage d'un point fixe elliptique. Les Houches Summer School Proceedings, ed. R. Helleman, G. Iooss, North Holland.

  • P. Collet & J. P. Eckmann [1980] ‘Iterated Maps on the Interval as Dynamical Systems’, Birkhauser, Boston.

    Google Scholar 

  • J. D. Crawford &S. Omohundro [1984] Physica 13D, 161–180, On the global structure of period doubling flows.

    Google Scholar 

  • R. Devaney [1974] Personal communication.

  • R. Devaney & Z. Nitecki [1979] Comm. Math. Phys. 67, 137–148, Shift automorphisms in the Hénon mapping.

    Google Scholar 

  • A. Douady & J. H. Hubbard [1982] C. R. Acad. Sci. Paris 294 Série I, 123–126, Itération des polynomes quadratiques complexes.

    Google Scholar 

  • H. El-Hamouly & C. Mira [1981] C. R. Acad. Sci. Paris 293, Série I, 525–528 Lien entres les propriétés d'un endomorphisme de dimension un et celles d'un difféomorphisme de dimension deux.

    Google Scholar 

  • M. J. Feigenbaum [1978] J. Stat. Phys. 19, 25–52, Quantitative universality for a class of nonlinear transformations.

    MATH  Google Scholar 

  • J. Franks & R. F. Williams [1985] Positive braids via the Jones polynomial. Preprint, Northwestern University, Evanston, Ill.

    Google Scholar 

  • B. D. Greenspan & P. J. Holmes [1983] Homoclinic orbits, subharmonics, and global bifurcations in forced oscillations. Chapter 10, pp. 172–214 in Nonlinear Dynamics and Turbulence ed. G. Barenblatt, G. Iooss and D. D. Joseph, Pitman, London.

    Google Scholar 

  • B. D. Greenspan & P. J. Holmes [1984] SIAM J. on Math. Analysis 15, 69–97, Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators.

    Google Scholar 

  • J. Guckenheimer [1979] Comm. Math. Phys. 70, 133–160, Sensitive dependence on initial conditions for one dimensional maps.

    Google Scholar 

  • J. Guckenheimer [1980] ‘Bifurcations of Dynamical Systems’, in Dynamical Systems, ed. J. K. Moser, Birkhauser, Boston.

    Google Scholar 

  • J. Guckenheimer & P. J. Holmes [1983] ‘Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields’, Springer Verlag, New York.

    Google Scholar 

  • J. Guckenheimer & R. F. Williams [1979] Publ. Math. IHES 50, 59–72, Structural Stability of Lorenz Attractors.

    Google Scholar 

  • I. Gumowski & C. Mira [1974] C. R. Acad. Sci. Paris 278, Série A, 1591–1593. Bifurcation pour une récurrence du deuxième ordre, par traversée d'un cas critique avec deux multiplicateurs complexes conjugués.

    Google Scholar 

  • I. Gumowski & C. Mira [1980 a] ‘Dynamique Chaotique’, Editions Cepadue, Toulouse, France.

    Google Scholar 

  • I. Gumowski & C. Mira [1980 b] ‘Recurrences and Discrete Dynamical Systems’, Springer Lecture Notes in Mathematics 809, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • C. Hayashi, [1964] ‘Nonlinear Oscillations in Physical Systems’, McGraw Hill, New York.

    Google Scholar 

  • M. Hénon [1976] Comm. Math. Phys. 50, 69–77, A two dimensional mapping with a strange attractor.

    Google Scholar 

  • M. W. Hirsch, C. C. Pugh & M. Shub [1977] ‘Invariant Manifolds’, Lecture Notes in Mathematics No. 583, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • P. J. Holmes [1979] Phil Trans Roy Soc, Lond A 292, 419–448, A nonlinear oscillator with a strange attractor.

    Google Scholar 

  • P. J. Holmes & D. C. Whitley [1983] On the Attracting Set for Duffing's Equation II: A Geometrical Model for Moderate Force and Damping (Proc. ‘Order in Chaos’, Los Alamos National Laboratory, May 1982)—also Physica 7D, 111–123.

  • P. J. Holmes & D. C. Whitley [1984a] Phil Trans Roy Soc Lond A 311, 43–102, Bifurcations of one and two dimensional maps.

    Google Scholar 

  • P. J. Holmes & D. C. Whitley [1984b] On the attracting set for Duffing's equation I: analytical methods for small force and damping; Proc. ‘Year of Concentration in Partial Differential Equations and Dynamical Systems’ University of Houston, W. E. Fitzgibbon III (ed), Pitman, London.

    Google Scholar 

  • G. Iooss [1979] ‘Bifurcation of Maps and Applications’, North-Holland, Amsterdam.

    Google Scholar 

  • M. V. Jacobson [1981] Comm. Math. Phys. 81, 39–88, Absolutely continuous invariant measures for one parameter families of one dimensional maps.

    CAS  PubMed  Google Scholar 

  • L. Jonker [1979] Proc. Lond. Math. Soc. 39, 428–450. Periodic orbits and kneading invariants.

    Google Scholar 

  • L. Jonker & D. A. Rand [1981] Invent. Math. 62, 347–365 and 63, 1–15, Bifurcations in one dimension I: the nonwandering set and II: A versal model for bifurcations.

    Google Scholar 

  • K. Meyer [1970] Trans Am. Math. Soc. 149, 95–107, Generic bifurcation of periodic points.

    Google Scholar 

  • K. Meyer [1971] Trans Am. Math. Soc. 154, 273–277, Generic stability properties of periodic points.

    Google Scholar 

  • J. Milnor & R. Thurston [1977] ‘On Iterated Maps of the Interval I and II’ Unpublished notes, Princeton University, Princeton, NJ.

    Google Scholar 

  • C. Mira [1969a] C. R. Acad. Sci. Paris 268 Série A, 621–624, Traversée d'un cas critique, pour une récurrence du deuxième ordre, sous l'effet d'une variation de paramètre.

    Google Scholar 

  • C. Mira [1969b] C. R. Acad. Sci. Paris 269, Serie A, 1006–1009. Étude d'un premier cas d'exception pour une récurrence ou une transformation ponctuelle, autonome du deuxième ordre a variables réeles.

    Google Scholar 

  • C. Mira [1970] C. R. Acad. Sci. Paris 270, Série A, 332–335 and 466–469. Etude d'un second cas d'exception pour une recurrence ... and Sur les cas d'exception d'une recurrence ...

    Google Scholar 

  • C. Mira [1981] Proc IX International Conference on Nonlinear Oscillations, Kiev, Sept. 1981, Chaotic dynamics in point mappings.

  • C. Mira [1982] C. R. Acad. Sci. Paris 294, Série I, 689–692 Ensembles rythmiques de suites de rotation pour un endomorphisme uni-dimensionnel et nombres de rotation d'un difféomorphisme conservatif bi-dimensionnel.

    Google Scholar 

  • M. Misiurewicz [1981 a] Publ. Math. IHES 53, 5–16. The structure of mappings of an interval with zero entropy.

    Google Scholar 

  • M. Misiurewicz [1981b] Publ. Math. IHES 53, 17–52, Absolutely continuous measures for certain maps of the interval.

    Google Scholar 

  • J. Moser [1973] ‘Stable and Random Motions in Dynamical Systems’, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • A. H. Nayfeh & D. T. Mook [1979] ‘Nonlinear Oscillations’, Wiley, New York.

    Google Scholar 

  • S. E. Newhouse [1980] ‘Lectures on Dynamical Systems’ in ‘Dynamical Systems’ ed. J. K. Moser, Birkhauser, Boston.

    Google Scholar 

  • H. Poincaré [1899] ‘Les Méthodes Nouvelles de la Mécanique Céleste’ (3 Vols) GauthierVillars, Paris.

    Google Scholar 

  • D. Rolfsen [1977] ‘Knots and Links’. Publish or Perish, Berkeley, CA.

    Google Scholar 

  • O. E. Rossler [1979] Ann. N.Y. Acad Sci 316, 376–392, Continuous chaos: four prototype equations.

    Google Scholar 

  • D. Singer [1978] SIAM J. Appl. Math 35, 260–267, Stable orbits and bifurcations of maps of the interval.

    Google Scholar 

  • S. Smale [1963] Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, ed. S. S. Cairns, pp. 63–80, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • S. Smale [1967] Bull Amer. Math. Soc. 73, 747–817, Differentiable dynamical systems.

    Google Scholar 

  • C. T. Sparrow [1982] ‘The Lorenz Equations: Bifurcations, Chaos and Strange Attractors’, Springer-Verlag; Berlin, Heidelberg, New York.

    Google Scholar 

  • F. Takens [1973 a] Ann. Inst. Fourier 23, 163–195, Normal forms for certain singularities of vectorfields.

    Google Scholar 

  • Y. Ueda [1980] Steady motions exhibited by Duffing's equation: a picture book of regular and chaotic motions, in ‘New Approaches to Nonlinear Problems in Dynamics’ ed. P. J. Holmes, SIAM Publications, Philadelphia.

    Google Scholar 

  • Y. Ueda [1981] Personal communication to P. Holmes.

  • T. Ueza & Y. Aizawa [1982] Prog. Theor. Phys. 68, 1907–1916. Topological character of a periodic solution in three dimensional ordinary differential equation system.

    Google Scholar 

  • S. M. Ulam & J. von Neumann [1947] Bull Am. Math. Soc. 53, 1120, On combinations of stochastic and deterministic processes.

    Google Scholar 

  • S. J. Van Strien [1981] On the bifurcations creating horseshoes in Dynamical Systems and Turbulence, D. A. Rand and L. S. Young (eds), Springer Lecture Notes in Mathematics 898, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Y. H. Wan [1978 a] SIAM J. Appl. Math 34, 167–175. Computation of the stability condition for the Hopf bifurcation of diffeomorphisms on ℝ2.

    Google Scholar 

  • Y. H. Wan [1978 b] Arch. Rational Mech. Anal. 68, 343–357, Bifurcation into invariant tori at points of resonance.

    Google Scholar 

  • D. C. Whitley [1982] The Bifurcations and Dynamics of Certain Quadratic Maps of the Plane, Ph. D. Thesis, University of Southampton, U.K.

    Google Scholar 

  • R. F. Williams [1974] Publ. Math. IHES 43, 169–203, Expanding attractors.

    Google Scholar 

  • R. F. Williams [1977] Springer Lectures Notes in Math. No. 615, Turbulence Seminar, 94–112, The Structure of Lorenz attractors.

  • R. F. Williams [1979] Publ. Math. IHES 50, 73–99, The structure of Lorenz attractors.

    Google Scholar 

  • J. A. Yorke & K. T. Alligood [1983] Bull. Am. Math. Soc. 9, 319–322, Cascades of period-doubling bifurcations: a prerequisite for horseshoes.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Golubitski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, P., Williams, R.F. Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences. Arch. Rational Mech. Anal. 90, 115–194 (1985). https://doi.org/10.1007/BF00250717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250717

Keywords

Navigation