Skip to main content
Log in

Is Gauss quadrature optimal for analytic functions?

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We consider the problem of optimal quadratures for integrandsf: [−1,1]→ℝ which have an analytic extension\(\bar f\) to an open diskD r of radiusr about the origin such that\(\left| {\bar f} \right|\)≦1 on\(\bar D_r \). Ifr=1, we show that the penalty for sampling the integrand at zeros of the Legendre polynomial of degreen rather than at optimal points, tends to infinity withn. In particular there is an “infinite” penalty for using Gauss quadrature. On the other hand, ifr>1, Gauss quadrature is almost optimal. These results hold for both the worst-case and asymptotic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhvalov, N.S.: On the optimal speed of integrating analytic functions (in Russian). Zh. Vychisl. Mat. Mat. Fiz.7, 1011–1020 (1967). (English Transl.): U.S.S.R. Comput. Math. Math. Phys.7, 63–75 (1967)

    Google Scholar 

  2. Bakhvalov, N.S.: On the optimality of linear methods for operator approximation in convex classes of functions (in Russian). Zh. Vychisl. Mat. Mat. Fiz.11, 1014–1018 (1971). (English Transl.): U.S.S.R. Comput. Math. Math. Phys.11, 244–249 (1971)

    Google Scholar 

  3. Barnhill, R.E.: Asymptotic properties of minimum norm and optimal quadratures. Numer. Math.12, 384–393 (1968)

    Google Scholar 

  4. Bojanov, B.D.: Best quadrature formula for a certain class of analytic functions. Zastosow. Mat.14, 441–447 (1974)

    Google Scholar 

  5. Bojanov, B.D.: Optimal rate of integration and ε-entropy of a class of analytic functions (in Russian). Mat. Zametki14, 3–10 (1973). (English Transl.): Math. Notes19, 551–556 (1973)

    Google Scholar 

  6. Chawla, M.M.: Asymptotic estimates for the error in the Gauss-Legendre quadrature formula. Comput. J.11, 339–340 (1968)

    Google Scholar 

  7. Chawla, M.M., Jain, M.K.: Error estimates for Gauss quadrature formulas for analytic functions. Math. Comput.22, 82–90 (1968)

    Google Scholar 

  8. Chawla, M.M., Jain, M.K.: Asymptotic error estimates for the Gauss quadrature formula. Math. Comput.22, 91–97 (1968)

    Google Scholar 

  9. Gautschi, W., Varga, R.S.: Error Bounds for Gaussian Quadrature of Analytic Functions. SIAM J. Numer. Anal.20, 1170–1186 (1983)

    Google Scholar 

  10. Larkin, F.M.: Optimal approximation in Hilbert spaces with reproducing kernel functions. Math. Comput.24, 911–921 (1970)

    Google Scholar 

  11. Pinkus, A.: Asymptotic minimum norm quadrature formulae. Numer. Math.24, 163–175 (1975)

    Google Scholar 

  12. Stenger, F.: Bounds on the error of Gauss-type quadratures. Numer. Math.8, 150–160 (1966)

    Google Scholar 

  13. Szegö, G.: Orthogonal Polynomials. New York: Am. Math. Soc. 1939

    Google Scholar 

  14. Traub, J.F., Woźniakowski, H.: A General Theory of Optimal Algorithms. New York: Academic Press 1980

    Google Scholar 

  15. Trojan, J.M.: Asymptotic model for linear problems (In preparation)

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the National Science Foundation under Grants MCS-8203271 and MCS-8303111

This research was supported in part by the National Science Foundation under Grant MCS-8923676

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalski, M.A., Werschulz, A.G. & Woźniakowski, H. Is Gauss quadrature optimal for analytic functions?. Numer. Math. 47, 89–98 (1985). https://doi.org/10.1007/BF01389877

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389877

Subject Classifications

Navigation