Skip to main content
Log in

Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

  • Technical Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

The computational advantages associated with the utilization of preconditioned iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multizone three-dimensional problems are examined. Significant redutions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu Kassim, A.M.; Topping, B.H.V. 1987: Static reanalysis: a review.J. Struct. Engng. 113, 1011–1028

    Google Scholar 

  • Argyris, J.H.; Roy, J.R. 1972: General treatment of structural modifications.J. Struct. Div. ASCE 98, 465–492

    Google Scholar 

  • Arora, J.S. 1976: Survey of structural reanalysis techniques.J. Struct. Div. ASCE 102, 783–802

    Google Scholar 

  • Cook, R.D.; Young, W.C. 1985:Advanced mechanic of materials. New York: McMillan

    Google Scholar 

  • Dervieux, A.; Fezoui, L.; Steve, H.; Periaux, J.; Stoufflet, B. 1989: Low-storage implicit upwinf-FEM schemes for the Euler equation.Proc. 11-th Int. Conf. Numer. Meth. in Fluid Dynamics, pp. 215–219. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Fox, R.L.; Mura, H. 1971: An approximate analysis technique for design calculations.AIAA J. 9, 177–179

    Google Scholar 

  • Golub, G.H.; Van Loan, C.F. 1983:Matrix computations. Baltimore: John Hopkins Univ. Press

    Google Scholar 

  • Guru Prasad, K.; Kane, J.H. 1992: Three dimensional boundary element thermal shape sensitivity analysis.Int. J. Heat and Mass Transfer (in press)

  • Kane, J.H. 1986: Shape optimization utilizing a boundary element formulation.Proc. BETECH 86

  • Kane, J.H. 1987: A second generation structural shape optimization capability employing a boundary element formulation. In: Pande, G.N.; Middleton, J. (eds.)Proc. Int. Conf. on numerical methods in engineering, pp. D43/1–13. Dordrecht: Martinus Nijhoff

    Google Scholar 

  • Kane, J.H. 1990: Boundary element design sensitivity analysis formulations for coupled problems.Engng. Analysis 7, 21–32

    Google Scholar 

  • Kane, J.H. 1992:Boundary element analysis formulations in engineering continuum mechanics. New Jersey: Prentice Hall

    Google Scholar 

  • Kane, J.H.; Gupta, A.; Saigal, S. 1989: Reusable intrinsic sample point (RISP) algorithm for the efficient numerical integration of three dimensional curved boundary elements.Int. J. Numer. Meth. Engng. 28, 1661–1676

    Google Scholar 

  • Kane, J.H.; Keyes, D.E.; Guru Prasad, K. 1991: Iterative equation solution techniques in boundary element analysis.Int. J. Numer. Meth. Engng. 31, 1511–1536

    Google Scholar 

  • Kane, J.H.; Kumar, B.L.K.; Gallagher, R.H. 1990: Boundaryelement iterative reanalysis for continuum structures.J. Engng. Mech., ASCE 116, 2293–2309

    Google Scholar 

  • Kane, J.H.; Kumar, B.L.K.; Stabinsky, M. 1991: Transient thermoelasticity and other body force effects in boundary element shape sensitivity analysis.Int. J. Numer. Meth. Engng. 31, 1203–1230

    Google Scholar 

  • Kane, J.H.; Mao, S.; Everstine, G. 1991: A boundary element formulation for acoustic shape sensitivity analysis.J. Acoustical Society of America 90, 561–573

    Google Scholar 

  • Kane, J.H.; Saigal, S. 1988: Design sensitivity analysis of solids using BEM.J. Engng. Mech., ASCE 114, 1703–1722

    Google Scholar 

  • Kane, J.H.; Saigal, S. 1990: An arbitrary multi-zone condensation technique for boundary element design sensitivity analysis.AIAA J. 28, 1277–1284

    Google Scholar 

  • Kane, J.H.; Stabinsky, M. 1988: Simultaneous computation of multiple sensitivities by a boundary element structural analysis formulation.Proc. Third Int. Conf. on CAD/CAM Robotics and Factories of the Future

  • Kane, J.H.; Wang, H. 1991: Boundary element shape sensitivity analysis formulations for thermal problems with nonlinear boundary conditions.AIAA J. 29, 1978–1989

    Google Scholar 

  • Kane, J.H.; Wang, H. 1992: Boundary formulations for shape sensitivity of temperature dependent conductivity problems.Int. J. Numer. Meth. Engng. (in press)

  • Kane, J.H.; Zhao, G.; Wang, H.; Guru Prasad, K. 1992: Boundary formulations for three dimensional continuum structural shape sensitivity analysis.Tranactions, ASME J. Appl. Mech. 31 (in press)

  • Kardestuncer, H.; Norrie, D. 1987:Finite element handbook. New York: McGraw-Hill

    Google Scholar 

  • Kavlie, D.; Powell, G.H. 1971: Efficient reanalysis of modified structures.J. Struct. Div. ASCE 97, 377–392

    Google Scholar 

  • Kirsch, U. 1981:Optimum structural design. New York: McGraw-Hill

    Google Scholar 

  • Kirsch, U.; Rubenstein, M.F. 1972: Reanalysis for limited structural design modifications.J. Engng. Mech. ASCE 98, 61–70

    Google Scholar 

  • Kirsch, U.; Toledano, G. 1983: Approximate reanalysis for modifications of structural geometry.Comp. & Struct. 9, 269–277

    Google Scholar 

  • Nachtigal, N.M.; Reddy, S.C.; Trefethen, L.N. 1992: How fast are nonsymmetric matrix iterations?SIAM J. Matrix Applics. July

  • Navarra, A. 1992: An application of GMRES to indefinite problems in meteorology.Appl. Numer. Mathem. (to appear)

  • Noor, A.K. 1974: Multiple configuration analysis via mixed methods.ASCE J. Struct. Div. ST9, 1991–1997

    Google Scholar 

  • Noor, A.K.; Lowder, H.E. 1974: Approximate techniques of structural reanalysis.Comp. & Struct. 4, 801–812

    Google Scholar 

  • Noor, A.K.; Lowder, H.E. 1975: Structural reanalysis via a mixed method.Comp. & Struct. 5, 9–12

    Google Scholar 

  • Ortega, J.M. 1988:Introduction to parallel and vector solution of linear systems. New York: Plenum Press

    Google Scholar 

  • Phansalkar, S.R. 1974: Matrix iterative methods for structural reanalysis.Comp. & Struct. 4, 779–800

    Google Scholar 

  • Saad, Y.; Schultz, M.H. 1986: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Statist. Comput. 7, 856–869

    Google Scholar 

  • Saigal, S.; Borggaard, J.T.; Kane, J.H. 1989: Boundary element implicit differentiation equations for design and sensitivities of axisymmetric structures.Int. J. Solids & Struct. 25, 527–538

    Google Scholar 

  • Saigal, S.; Kane, J.H. 1990: An arbitrary multi-zone condensation technique for boundary element design sensitivity analysis.AIAA J. 28, 1203–1204

    Google Scholar 

  • Saigal, S.; Kane, J.H.; Aithal, R. 1989: Semi-analytical structural sensitivity formulation using a boundary elements.AIAA J. 27, 1615–1621

    Google Scholar 

  • Shakib, F.; Hughes, T.J.R.; Johan; Z. 1989: Element-by-element algorithms for nonsymmetric matrix problems arising in fluids. In: Kane, J.H.; Carlson, A.D.; Cox, D.L. (eds.)Solution of superlarge problems in computational mechanics, pp. 1–33. New York: Plenum Press

    Google Scholar 

  • Storaasli, O.O.; Sobieszczanski, J. 1974: On the accuracy of Taylor approximation for structure resizing.AIAA J. 12, 231–233

    Google Scholar 

  • Wigton, L.B.; Yu, N.J.; Young, D.P. 1985: GMRES acceleration of computational fluid dynamics codes.Proc. AIAA 7-th Computational Fluid Dynamic Conf., 85–1494, Washington DC: AIAA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Sobieski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guru Prasad, K., Kane, J.H. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers. Structural Optimization 4, 224–235 (1992). https://doi.org/10.1007/BF01742749

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742749

Keywords

Navigation