Skip to main content
Log in

Caffeine augmentation of electroconvulsive seizures

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Caffeine has been used clinically to increase seizure length in electroconvulsive treatment (ECT). The present study was designed to establish an animal model of caffeine-augmented seizures for further study of mechanisms and effects of pharmacological manipulation of seizure length. Increasing doses of caffeine (0–200 mg/kg, IP) were given before electroconvulsive stimulation (ECS) in rats and resulting seizure lengths were quantified by timing of classical tonic-clonic convulsive movements. With this paradigm, caffeine led to a dose-dependent increase in seizure duration. This proconvulsant action of caffeine was detectable within 1 min after dosing, persisted for at least 230 min and was reversible. The results suggest that seizure length is a practicable measure in pharmacological modification of electroconvulsive seizures. They also suggest that pharmacologically-modified ECS can be modeled effectively in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams R (1988) Electroconvulsive therapy. Oxford University Press, New York

    Google Scholar 

  • Albertson TE, Joy RM, Stark LG (1983) Caffeine modification of kindled amygdaloid seizures. Pharmacol Biochem Behav 19:339–343

    Article  PubMed  Google Scholar 

  • Ameri A, Jurna I (1991) Adenosine A1 and non-A1 receptors: intracellular analysis of the actions of adenosine agonists and antagonists in rat hippocampal neurones. Brain Res 546:69–78

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (1990) The practice of electroconvulsive therapy: recommendations for treatment, training, and privileging. APA Press, Washington, DC

    Google Scholar 

  • Ault B, Wang CM (1986) Adenosine inhibits epileptiform activity arising in hippocampal area CA3. Br J Pharmacol 87:695–703

    PubMed  Google Scholar 

  • Ault B, Olney MA, Joyner JL, Boyer CE, Notrica MA, Soroko, Wang CM (1987) Pro-convulsant actions of theophylline and caffeine in the hippocampus: implications for the management of temporal lobe epilepsy. Brain Res 426:93–102

    Article  PubMed  Google Scholar 

  • Bonati M, Garattini S (1984) Interspecies comparisons of caffeine disposition. In: Dews PB (ed) Caffeine: perspectives from recent research. Springer, Berlin, pp 48–56

    Google Scholar 

  • Bonati M, Latini R, Tognoni G, Young JF, Garattini S (1984–85) Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat, and mouse. Drug Metab Rev. 15:1355–1383

    PubMed  Google Scholar 

  • Bortolotti A, Traina GL, Guaitani A, Marzi E, Latini R, Young JF, Bonati M (1990) In vivo and perfused liver caffeine kinetics in the rat. Res Commun Chem. Pathol Pharmacol 69:285–295

    PubMed  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    PubMed  Google Scholar 

  • Cantú TG, Korek JS (1991) Caffeine in electroconvulsive therapy. DICP 25:1079–1080

    PubMed  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1968) Studies of drug effects on electrically induced extensor seizures and clinical implications. Arch Int Pharmacodyn 172:183–218

    PubMed  Google Scholar 

  • Choi OH, Shamim MT, Padgett WL, Daly JW (1988) Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 43:387–398

    PubMed  Google Scholar 

  • Chu NS (1981) Caffeine- and aminophylline-induced seizures. Epilepsia 22:85–94

    PubMed  Google Scholar 

  • Coffey CE, Figiel GS, Weiner RD, Saunders WB (1990) Caffeine augmentation of ECT. Am J Psychiatry 147:579–585

    PubMed  Google Scholar 

  • Cutrufo C, Bortot L, Giachetti A, Manzini S (1992) Differential effects of various xanthines on pentylenetetrazole-induced seizures in rats: an EEG and behavioural study. Eur J Pharmacol 222:1–6

    PubMed  Google Scholar 

  • Daly JW, Hide I, Müller CE, Shamim M (1991) Caffeine analogs: structure-activity relationships at adenosine receptors. Pharmacology 42:309–321

    PubMed  Google Scholar 

  • Dragunow M, Robertson HA (1987) 8-Cyclopentyl-1,3-dimethylxanthine prolongs epileptic seizures in rats. Brain Res 417:377–379

    PubMed  Google Scholar 

  • Dunwiddie TV (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541–548

    PubMed  Google Scholar 

  • Dunwiddie TV, Fredholm BB (1984) Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus are different from receptors mediating cyclic AMP accumulation. Naunyn-Schmiedeberg's Arch Pharmacol 326:294–301

    Google Scholar 

  • Evoniuk G, Von Borstel RW, Wurtman RJ (1987) Antagonism of the cardiovascular effects of adenosine by caffeine or 8-(p-sulfophenyl)-theophylline. J Pharmacol Exp Ther 240:428–432

    PubMed  Google Scholar 

  • Fastbom J, Pazos A, Palacios JM (1987) The distribution of adenosine A1 receptors and 5′-nucleotidase in the brain of some commonly used experimental animals. Neuroscience 22:813–826

    PubMed  Google Scholar 

  • File SE, Baldwin HA, Johnston AL, Wilks LJ (1988) Behavioral effects of acute and chronic administration of caffeine in the rat. Pharmacol Biochem Behav 30:809–815

    Article  PubMed  Google Scholar 

  • Foote WE, Holmes P, Pritchard A, Hatcher C, Mordes J (1978) Neurophysiological and pharmacodynamic studies on caffeine and on interactions between caffeine and nicotinic acid in the rat. Neuropharmacolgy 17:7–12

    Google Scholar 

  • Francis A, Fochtmann L (1993) Pharmacological augmentation of ECS: neurochemistry. Convulsive Ther 9:77

    Google Scholar 

  • Fredholm BB (1985) On the mechanism of action of theophylline and caffeine. Acta Med Scand 217:149–53

    PubMed  Google Scholar 

  • Garattini S (1985) Active drug metabolites: an overview of their relevance in clinical pharmacokinetics. Clin Pharmacokinet 10:216–227

    PubMed  Google Scholar 

  • Jarvis MF, Jacobson KA, Williams M (1987) Autoradiographic localization of adenosine A1 receptors in rat brain using [3H]XCC, a functionalized congener of 1,3-dipropylxanthine. Neurosci Lett 81:69–74

    PubMed  Google Scholar 

  • Jarvis MF, Jackson RH, Williams M (1989) Autoradiographic characterization of high-affinity adenosine A2 receptors in rat brain. Brain Res 484:111–118

    PubMed  Google Scholar 

  • Khanna KL, Rao GS, Cornish HH (1972) Metabolism of caffeine-3H in the rat. Toxicol Appl Pharmacol 23:720–730

    PubMed  Google Scholar 

  • Latini R, Bonati M, Castelli D, Garattini S (1978) Dose-dependent kinetics of caffeine in rats. Toxicol Lett 2:267–270

    Article  Google Scholar 

  • Lee KS, Reddington M (1986) Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neuroscience 19:535–549

    PubMed  Google Scholar 

  • Marangos PJ, Paul SM, Parma AM, Goodwin FK, Syapin P, Skolnick P (1979) Purinergic inhibition of diazepam binding to rat brain (in vitro). Life Sci 24:851–858

    Article  PubMed  Google Scholar 

  • McPherson PS, Kim Y-K, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong, C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channels. Neuron 7:17–25

    PubMed  Google Scholar 

  • Modrow HE, Holloway FA, Christensen HD, Carney JM (1981) Relationship between caffeine discrimination and caffeine plasma levels. Pharmacol Biochem Behav 15:323–325

    PubMed  Google Scholar 

  • Nehlig A, Daval J-L, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17:139–170

    Article  Google Scholar 

  • Sackeim H, Decina P, Prohovnik I, Malitz S (1987) Seizure threshold in electroconvulsive therapy. Arch Gen Psychiatry 44:355–360

    PubMed  Google Scholar 

  • Sant'Ambrogio G, Mognoni P, Ventrella L (1964) Plasma levels of caffeine after oral, intramuscular and intravenous administration. Arch Int Pharmcodyn 150:259–263

    Google Scholar 

  • Sattin A (1971) Increase in the content of adenosine 3′,5′-monophosphate in mouse forebrain during seizures and prevention of the increase by methylxanthines. J Neurochem 18:1087–1096

    PubMed  Google Scholar 

  • Sawynok J, Yaksh T (1993) Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev 45:43–85

    PubMed  Google Scholar 

  • Shapira B, Lerer B, Gilboa D, Drexler H, Kugelmass S, Calev A (1987) Facilitation of ECT by caffeine pretreatment. Am J Psychiatry 144:1199–1202

    PubMed  Google Scholar 

  • Ståhle L, Segersvärd S, Ungerstedt U (1991) Drug distribution studies with microdialysis: II. Caffeine and theophylline in blood, brain and other tissues in rats. Life Sci 49:1843–1852

    PubMed  Google Scholar 

  • Swartz CM, Lewis RK (1991) Theophylline reversal of electroconvulsive therapy (ECT) seizure inhabition. Psychosomatics 32:47–51

    PubMed  Google Scholar 

  • Tanaka E, Ishikawa A, Yamamoto Y, Uchida E, Kobayashi S, Yasuhara H, Misawa S (1992) Simplified approach for evaluation of hepatic drug-oxidizing capacity with a simultaneous measurement of caffeine and its primary demethylated metabolites in carbon tetrachloride-intoxicated rats. Xenobiotica 22:535–541

    PubMed  Google Scholar 

  • Thithapandha A, Maling HM, Gillette JR (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc Soc Exp Biol Med 139:582–586

    PubMed  Google Scholar 

  • Thompson SM, Haas HL, Gähwiler BH (1992) Comparison of the actions of adenosine at pre- and postsynaptic receptors in the rat hippocampus in vitro. J Physiol 451:347–363

    PubMed  Google Scholar 

  • Torres IJ, Litterst CL, Guarino AM (1978) Transport of model compounds across the peritoneal membrane in the rat. Pharmacology 17:330–340

    PubMed  Google Scholar 

  • Tsuzuki J, Newburgh RW (1975) Inhibition of 5′-nucleotidase in rat brain by methylxanthines. J Neurochem 25:895–896

    PubMed  Google Scholar 

  • Weber RG, Jones CR, Lohse MJ, Palacios JM (1990) Autoradiographic visualization of A1 adenosine receptors in rat brain with [3H] 8-cyclopentyl-1,3-dipropylxanthine. J Neurochem 54:1344–1353

    PubMed  Google Scholar 

  • Weir RL, Hruska RE (1983) Interaction between methylxanthines and the benzodiazepine receptor. Arch Int Pharmacodyn 265:42–48

    PubMed  Google Scholar 

  • Yasuhara M, Levy G (1988) Rapid development of functional tolerance to caffeine-induced seizures in rats. Proc Soc Exp Biol Med 188:185–190

    PubMed  Google Scholar 

  • Zhang G, Franklin PH, Murray TF (1993) Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. J Pharmacol Exp Ther 264:1415–1424

    PubMed  Google Scholar 

  • Zimanyi I, Pessah IN (1991) Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes. Brain Res 561:181–191

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, A., Fochtmann, L. Caffeine augmentation of electroconvulsive seizures. Psychopharmacology 115, 320–324 (1994). https://doi.org/10.1007/BF02245072

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245072

Key words

Navigation