Skip to main content
Log in

Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data

I. A Mathematical model

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. A biomathematical model is described to calculate the intracapillary and transcapillary glomerular pressure gradients from the sieving coefficients (Φ: fractional clearances/GFR) of macromolecules such as polyvinylpyrrolidone (PVP). Two differential equations have been developed. The first one calculates local values for GFR in terms of local values forPGC (intracapillary hydrostatic pressure) and π (oncotic pressure). The second equation calculates the clearance of PVP equimolecular fractions, the sieving equations previously described (24) being used to derive the concentrations of PVP in the filtrate (c 2). Two variants of the second equation have been considered, assuming the filtrate in contact with the membrane either “well stirred” or “unstirred” (constantc 2 and localc 2 gradient models respectively).

Computer simulations have been used to illustrate how the sieving curve is modified when the five parameters on which depends the shape of the curve are changed one by one. The sieving curve relates Φ toa s (hydrodynamically equivalent molecular radius). The determining parameters are:\(\overline {GFP}\), the mean effective glomerular filtration pressure, ε, the slope of the intracapillary pressure,FF, the filtration fraction,Cp 0, the protein concentration in arterial plasma andr, the pore radius which is the only structural parameter involved when one assumes the glomerular membrane crossed by cylindrical pores of uniform size and length.

The shape of the sieving curve is modified significantly enough by changing\(\overline {GFP}\),FF andr within reasonable limits, to make it possible to derive\(\overline {GFP}\) andr from experimental sieving data for macromolecules such as PVP or dextrans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arturson, G., Groth, T., Grotte, G.: Human glomerular membrane porosity and filtration pressure. Dextran clearance data analysed by theoretical models. Clin. Sci.40, 137–168 (1971)

    Google Scholar 

  2. Baer, Ph. G., Navar, L. G.: Renal vasodilation and uncoupling of blood flow and filtration rate autoregulation. Kidney Int4, 12–21 (1973)

    Google Scholar 

  3. Brenner, B. M., Troy, J. L., Daugharty, T. M.: Pressures in cortical structures of the rat kidney. Amer. J. Physiol.222, 246–251 (1972)

    Google Scholar 

  4. Brenner, B. M., Troy, J. L., Daugharty, T. M., Deen, W. M., Robertson, C. R.: Dynamics glomerular ultrafiltration in the rat. II. Plasma flow dependence of GFR. Amer. J. Physiol.223, 1184–1190 (1972)

    Google Scholar 

  5. Decoodt, P., Du Bois, R., Gassee, J. P., Verniory, A., Lambert, P. P.: A model for sieving of macromolecules by the glomerular membrane of the kidney. Comp. Progr. in Biomed. (in press)

  6. Deen, W. M., Robertson, C. R., Brenner, B. M.: A model of glomerular ultrafiltration in the rat. Amer. J. Physiol.223, 1178–1183 (1972)

    Google Scholar 

  7. Deen, W. M., Robertson, C. R., Brenner, B. M.: Concentration polarization in an ultrafiltering capillary. Biophys. J.14, 412–431 (1974)

    Google Scholar 

  8. Deen, W. M., Troy, J. L., Robertson, C. R., Brenner, B. M.: Dynamics of glomerular ultrafiltration in the rat. Determination of the ultrafiltration coefficient. J. clin. Invest.52, 1500–1508 (1973)

    Google Scholar 

  9. Gassée, J. P.: Hémodynamique glomérulaire et tamisage des macromolécules de PVP. Thèse d'agrégation (à paraître)

  10. Gassée, J. P., Decoodt, P., Verniory, A., Lambert, P. P.: Autoregulation of effective glomerular filtration pressure. Amer. J. Pysiol.226, 616–623 (1974)

    Google Scholar 

  11. Haberman, W. L., Sayre, R. M.: Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin Report no. 1143 (1958)

  12. Lambert, P. P., Gassée, J. P., Askenasi, R.: La perméabilité du rein aux macromolécules. Physiopathologie de la protéinurie. In: Acquisitions récentes de physiopathologie rénale, pp. 181–214. Liège: Desoer 1968

    Google Scholar 

  13. Lambert, P. P., Gassée, J. P., Verniory, A., Ficheroulle, P.: Measurement of the glomerular filtration pressure from sieving data for macromolecules. Pflügers Arch.329 34–58 (1971)

    Google Scholar 

  14. Lambert, P. P., Verniory, A., Gassée, J. P., Decoodt, P.: Glomerular sieving of macromolecules and effective filtration pressure. Vth Intern. Congr. of Nephrology, Mexico 1972, Vol. 3, pp. 9–16 (1974)

    Google Scholar 

  15. Lambert, P. P., Verniory, A., Gassée, J. P., Ficheroulle, P.: Sieving equations and effective glomerular filtration pressure. Kidney Int.2, 131–146 (1972)

    Google Scholar 

  16. Landis, E. M., Pappenheimer, J. R.: Exchange of substances through capillary walls. In: Handbook of Physiology. Circul. II. Amer. Physiol. Soc., pp. 961 to 1034. Baltimore: Williams and Wilkins 1963

    Google Scholar 

  17. Licko, V., Bartoli, E., Earley, L. E.: Factors determining glomerular filtration rate: simulations with a mathematical model of the mammalian glomerulus. Kidney Int. (in press)

  18. Liebau, G. D., Levine, Z., Thurau, K.: Micropuncture studies on the dog kidney. I. The response of the proximal tubule to changes in systemic blood pressure. Pflügers Arch.304, 57–68 (1968)

    Google Scholar 

  19. Navar, L. G.: Minimal preglomerular resistance and calculation of normal glomerular pressure. Amer. J. Physiol.219, 1658–1663 (1970)

    Google Scholar 

  20. Robertson, C. R., Deen, W. M., Troy, J. L., Brenner, B. M.: Dynamics of glomerular ultrafiltration in the rat. Hemodynamics and autoregulation. Amer. J. Physiol.223, 1191–1200 (1972)

    Google Scholar 

  21. Rosenbrock, H. H.: An automatic method for finding the greatest or least value of a function. Computer J.3, 175 (1960)

    Google Scholar 

  22. Solomon, A. K.: Characterization of biological membranes by equivalent pores. J. Gen. Physiol.51, 335–364 (1968)

    Google Scholar 

  23. Steven, K., Strøback, S.: Renal corpuscular hydrodynamics: digital computer simulation. Pflügers Arch.348, 317–331 (1974)

    Google Scholar 

  24. Verniory, A., Du Bois, R., Decoodt, P., Gassée, J. P., Lambert, P. P.: Measurement of the permeability of biological membranes. Application to the glomerular wall. J. gen. Physiol.62, 489–507 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Bois, R., Decoodt, P., Gassée, J.P. et al. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. Pflugers Arch. 356, 299–316 (1975). https://doi.org/10.1007/BF00580004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580004

Key words

Navigation