Skip to main content
Log in

Myocardial glucose uptake and breakdown during adenosine-induced vasodilation

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

In isolated K+ (16.2 mM)-arrested cat hearts perfused at constant pressure adenosine infusions (0.8 μmoles · min−1 · 100 g−1 for 10 min) caused an increase in myocardial14C-glucose uptake and release of14CO2+H14CO 3 and14C-lactate simultaneously with a rise in coronary flow. The ratio of the release of14CO2+H14CO 3 to that of14C-lactate and the specific activity of lactate in the effluate were not altered. In K+-arrested hearts perfused with constant volume neither glucose uptake nor glucose breakdown were influenced by 0.8 or 100 μmoles · min−1 · 100 g−1 adenosine with 0.1–5 mM glucose in the perfusion medium. It is concluded that adenosine does not affect directly the myocardial glucose carrier system, aerobic or anaerobic glucose breakdown or glycogenolysis, but enhances glucose uptake secondarily by increasing coronary flow. This interpretation is substantiated by the finding that mechanically produced increases in perfusion volume caused similar increases in myocardial glucose uptake as were observed with comparable adenosine-induced coronary flow increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berne, R. M., Rubio, R., Dobson, J. G. Jr., Curnish, R. R.: Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow. Circulat. Res.28, Suppl. I, 115–119 (1971)

    Google Scholar 

  2. Bihler, I., Sawh, P. C.: Regulation of sugar transport in muscle: Effect of increased external potassium in vitro. Biochim. biophys. Acta (Amst.)241, 301–309 (1971)

    Google Scholar 

  3. Brachfeld, N., Ohtaka, Y., Klein, I., Kawade, M.: Substrate preference and metabolic activity in the aerobic and hypoxic turtle heart. Circulat. Res.31, 453–467 (1972)

    Google Scholar 

  4. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem.1, 279–285 (1960)

    Google Scholar 

  5. Chain, E. B., Mansford, K. R. L., Opie, L. H.: Effects of insulin on the pattern of glucose metabolism in the perfused working and Langendorff heart of normal and insulin-deficient rats. Biochem. J.115, 537–546 (1969)

    Google Scholar 

  6. Crone, C., Garlick, D.: The penetration of inulin, sucrose, mannitol, and tritiated water from the interstitial space in muscle into the vascular system. J. Physiol. (Lond.)210, 387–404 (1970)

    Google Scholar 

  7. Dole, V. R.: Insulin-like action of ribonucleic acid, adenylic acid, and adenosine. J. biol. Chem.237, 2758–2762 (1962)

    Google Scholar 

  8. Dugas, M. C., Ramaswamy, K., Crane, R. C.: An analysis of thed-glucose influx kinetics of in vitro hamster jejunum, based on considerations of the mass-transfer coefficient. Biochim. biophys. Acta (Amst.)382, 576–589 (1975)

    Google Scholar 

  9. Durán, W. N., Alvarez, A., Yudilevich, O. L.: Influence of maximal vasodilation on glucose and sodium blood-tissue transport in canine heart. Microvasc. Res.6, 347–359 (1973)

    Google Scholar 

  10. Hearse, D. J., Stewart, D. A., Braimbridge, W. V.: Hypothermic arrest and potassium arrest. Circulat. Res.36, 481–489 (1975)

    Google Scholar 

  11. Hellberg, K., Rickart, A., Wayland, H., Bing, R. J.: The coronary microcirculation in the potassium chloride arrested heart. J. Molec. Cell. Cardiol.2, 221–230 (1971)

    Google Scholar 

  12. Hohorst, H.-J.: Bestimmung vonl-(+)-Lactat mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, 2nd edit. (H. U. Bergmeyer, ed.), pp. 1425–1429. Weinheim: Verlag Chemie 1970

    Google Scholar 

  13. Honig, C. R., Bourdeau-Martini, J.: Extravascular component of oxygen transport in normal and hypertrophied hearts with special reference to oxygen therapy. Circulat. Res.35, Suppl. II, P97–103 (1974)

    Google Scholar 

  14. Hudson, J. A., Carter, D. B.: An analysis of factors affecting tissue oxygen tension. Proc. roy. Soc. B,161, 247–274 (1965)

    Google Scholar 

  15. Morgan, H. E., Henderson, M. F., Regen, D. M., Park, C. R.: Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J. biol. Chem.236, 253–261 (1961)

    Google Scholar 

  16. Naftalin, R. J.: The role of unstirred layers in control of sugar movement across red cell membranes. Biochim. biophys. Acta (Amst.)233, 635–643 (1971)

    Google Scholar 

  17. Narahara, H. T., Özand, P.: Studies on tissue permeability. IX. The effect of insulin on the penetration of 3-methylglucose-H3 in frog muscle. J. biol. Chem.238, 40–49 (1963)

    Google Scholar 

  18. Neely, J. R., Liebermeister, H., Morgan, H. E.: Effect of pressure development on membrane transport of glucose in isolated rat heart. Amer. J. Physiol.212, 815–822 (1967)

    Google Scholar 

  19. Opie, L. H.: Coronary flow rate and perfusion pressure as determinants of mechanical function and oxydative metabolism of isolated perfused rat heart. J. Physiol. (Lond.)180, 529–541 (1965)

    Google Scholar 

  20. Raberger, G., Kraupp, O., Stühlinger, W., Nell, G., Chirikdjian, J. J.: The effects of an intracoronary infusion of adenosine on cardiac performance, blood supply and myocardial metabolism in dogs. Pflügers Arch.317, 20–34 (1970)

    Google Scholar 

  21. Renkin, E. M.: Blood flow and transcapillary exchange in skeletal and cardiac muscle. In: Coronary circulation and energetics of the myocardium (G. Marchetti and B. Taccardi, eds.), pp. 18–30. Basel-New York: S. Karger 1967

    Google Scholar 

  22. Rubio, V. R., Wiedmeier, T., Berne, R. M.: Nucleoside phosphorylase: Localization and role in the myocardial distribution of purines. Amer. J. Physiol.222, 550–555 (1972)

    Google Scholar 

  23. Sendroy, J., Jr., Dillon, R. T., Van Slyke, D. D.: Studies of gas and electrolyte equilibria in blood. XIX. The solubility and physical state of uncombined oxygen in blood. J. biol. Chem.105, 597–632 (1934)

    Google Scholar 

  24. Starling, E. H.: The fluids of the body. Chicago: University of Chicago Press 1909

    Google Scholar 

  25. Turnheim, K., Weissel, M., Donath, R.: The influence of adenosine on the metabolism of glucose in isolated perfused cat hearts. Naunyn-Schmiedeberg's Arch. Pharmacol.282, R100 (1974)

    Google Scholar 

  26. Weissel, M., Brugger, G., Raberger, G., Kraupp, O.: The effects of adenosine on coronary conductance, cardiac dynamics and myocardial metabolism of the isolated perfused cat heart. Pharmacology12, 120–128 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnheim, K., Donath, R., Weissel, M. et al. Myocardial glucose uptake and breakdown during adenosine-induced vasodilation. Pflugers Arch. 365, 197–202 (1976). https://doi.org/10.1007/BF01067019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067019

Key words

Navigation