Skip to main content
Log in

Extended Hückel theory: A new population analysis and its application to forecast chemical bond lengths

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Although widely used, the population analysis proposed by Mulliken has been contested by several authors. A new analysis, very easily computed on the orthogonal basis, is here proposed and applied to the EHT wave function.

Under its usual presentation, the EHT method is unable to directly evaluate bond lengths through an energy minimum condition. However, it is possible to settle an empirical quadratic relation between the bond lengthR rs and a quantity calledp rs, similar to a bond population. Such relations are given for bonds of the CC, CN, CO, CS, CF, CCl, CBr, CH, NO and OH types.

The examination of the variation of the bond population under a variation of the bond length has enabled us to prove that this semi-empirical relation was usable in an iterative process: starting from bond lengths taken from any systematic table, it is possible, for a given molecule, to evaluate the bond length consistent with experimental values within an accuracy of 0.03 Å. Some examples, concerning cyclic or acyclic molecules and various kinds of bonds, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman, R.: J. Chem. Phys.39, 1397, 2745 (1963);40, 2472, 2480 (1964)

    Google Scholar 

  2. Schuster, P.: Monatsh. Chem.100, 1033 (1969)

    Google Scholar 

  3. Engelke, Z. Beckel, C. L.: Intern. J. of Quantum Chem.58, 209 (1974).

    Google Scholar 

  4. Löwdin, P. O.: J. Chem. Phys.18, 365 (1950)

    Google Scholar 

  5. Advan. Quantum Chem.5, 185 (1970)

  6. Mulliken, R. S.: J. Chem. Phys.23, 1833, 2343 (1955)

    Google Scholar 

  7. Roby, K. R.: Theoret. Chim. Acta (Berl.)33, 105 (1974)

    Google Scholar 

  8. Rinaldi, D., Rivail, J. L., Barriol, J.: Theoret. Chim. Acta (Berl.)22, 291 (1971)

    Google Scholar 

  9. Politzer, R., Harris, R. R.: J. Am. Chem. Soc.92, 6451 (1970); Politzer, P., Mulliken, R. S.: J. Chem. Phys.55, 5135 (1971); Politzer, P.: Theoret. Chim. Acta (Berl.)23, 203 (1971); Pollitzer, P., Reggio, P. H.: J. Am. Chem. Soc.94, 8308 (1972)

    Google Scholar 

  10. Hirshfeld, F. L.: Theoret. Chim. Acta (Berl.)44, 129 (1977)

    Google Scholar 

  11. Coulson, C. A.: Proc. Roy. Soc. (London)A169, 413 (1939)

    Google Scholar 

  12. Longuet-Higgins, H. C., Salem, L.: Proc. Roy. Soc. (London)A251, 172 (1959); see also Salem, L.: The molecular orbital theory of conjugated systems, p. 136. New York: W. A. Benjamin (1960)

    Google Scholar 

  13. Gordy, W., Cook, R. L.: “Microwave molecular spectra”, in: Technic of organic chemistry, A. Weissberger, Ed., vol.55, part II, p. 675–710. New York: Interscience 1970

    Google Scholar 

  14. Pauling, L., Huggins, M. L.: Z. Krist.A87, 205 (1934)

    Google Scholar 

  15. Schomaker, V., Stevenson, D. P.: J. Am. Chem. Soc.63, 37 (1941); Gordy, W.: J. Chem. Phys.15, 81 (1947)

    Google Scholar 

  16. Pople, J. A., Beveridge, D. L.: Approximate molecular orbital theory, p. 111. New York: McGraw-Hill 1970

    Google Scholar 

  17. Bak, B., Hansen-Nygaard, L., Rastrup-Andersen, J.: J. Mol. Spectry.22, 361 (1958)

    Google Scholar 

  18. Bak, B., Cristensen, D., Dixon, W. B., Hansen-Nygaard, L., Rastrup-Andersen, J., Schottlander, M.: J. Mol. Spectry.9, 124 (1962

    Google Scholar 

  19. Bak, B., Hansen, L., Rastrup-Andersen, J.: Disc. Faracay Soc.19, 30 (1955)

    Google Scholar 

  20. Almennigen, A., Bastiansen, O., Traetteberg, M.: Acta Chem. Scand.12, 1221 (1958)

    Google Scholar 

  21. Scharpen, L. H., Laurriee, V. M.: J. Chem. Phys.43, 2765 (1965)

    Google Scholar 

  22. Lerner, R. G., Dailey, B. P., Friend, J. P.: J. Chem. Phys.26, 680 (1957)

    Google Scholar 

  23. Wollrab, J. E., Scharpen, L. H., Ames, D. P.: J. Chem. Phys.49, 2405 (1965)

    Google Scholar 

  24. Kurland, R. J., Wilson, E. B.: J. Chem. Phys.27, 585 (1957)

    Google Scholar 

  25. Ottersen, Tor: Acta Chem. Scand.A29 (10), 939 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerillot, C.R., Lissillour, R. & Le Beuze, A. Extended Hückel theory: A new population analysis and its application to forecast chemical bond lengths. Theoret. Chim. Acta 52, 1–17 (1979). https://doi.org/10.1007/BF00581696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581696

Key words

Navigation