Skip to main content
Log in

A theoretical study of the relative affinities of an aliphatic and an aromatic bisguanylhydrazone for the minor groove of double-stranded (dA-dT) n oligomers

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The nonintercalative binding of an aliphatic and an aromatic bisguanylhydrazone (BGH) to the minor groove of double-stranded (dA-dT) n oligomers is investigated by means of theoretical computations. The preferred binding arrangements of both BGHs are stabilized by a number of H-bonding interactions with sites O2(T), N3(A) and o′1 on the two strands, and require limited conformational rearrangements of the BGHs around their C-C single bonds. The intermolecular interaction energy is larger with the aliphatic BGH than with the aromatic one. The energy difference is, however, considerably reduced when the oligomer is lengthened: it passes from 16.1 kcal/mole at the heptamer level, to 7.9 kcal/mole at the undecamer level and to 4.6 kcal/mole when each strand of the undecamer is flanked with a complementary complete helical turn of phosphates, on both the 3′ and 5′ termini.

The interaction energies of the BGHs with water molecules in the first hydration shell are, however, also larger with the aliphatic BGH, than with the aromatic BGH. This energy difference is further enhanced when one considers also the water molecules in the second shell. It becomes greater than the difference in the interaction energy of the two BGHs with (dA-dT) n for large values of n. When the dehydration energy of BGHs is taken into account the overall energy balance is then more favorable for the interaction of the aromatic than of the aliphatic BGH with the polynucleotide. This last conclusion is in agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braithwaite, A., Baguley, B.: Biochemistry 19, 1101 (1980)

    Google Scholar 

  2. Baguley, B.: Mol. Cell. Biochem. 43, 167 (1982)

    Google Scholar 

  3. Dave, C., Ehrke, J., Mihich, E.: Chem. Biol. Interactions 12, 183 (1976)

    Google Scholar 

  4. Dave, C., Ehrke, J., Mihich, E.: Chem. Biol. Interactions 16, 57 (1977)

    Google Scholar 

  5. Denny, W., Cain, B.: J. Med. Chem. 22, 1234 (1979)

    Google Scholar 

  6. Zimmer, C.: Progr. Nucl. Acid. Res. Mol. Biol. 15, 285 (1975)

    Google Scholar 

  7. Denny, W., Atwell, G., Baguley, B., Cain, B.: J. Med. Chem. 22, 134 (1979)

    Google Scholar 

  8. Sartorelli, A., Iannotti, A., Booth, B., Schneider, F., Bertino, J., Johns, D.: Biochim, Biophys. Acta 103, 174 (1965)

    Google Scholar 

  9. Gresh, N., Claverie, P., Pullman, A.: Int. J. Quantum Chem., Symp. 13, 243 (1979)

    Google Scholar 

  10. Gresh, N.: Biochim. Biophys. Acta 597, 345 (1980)

    Google Scholar 

  11. Gresh, N., Pullman, B.: Biochim. Biophys. Acta 608, 47 (1980)

    Google Scholar 

  12. Gresh, N., Pullman, B.: Biochim. Biophys. Acta 625, 356 (1980)

    Google Scholar 

  13. Gresh, N., Etchebest, C., de la Luz Rojas, O., Pullman, A.: Int. J. Quantum Chem., Quantum Biol. Symp. 8, 109 (1981)

    Google Scholar 

  14. Gresh, N., Pullman, A.: Int. J. Quantum Chem. 22, 709 (1982)

    Google Scholar 

  15. Gresh, N., Pullman, B.: Theoret. Chim. Acta (Berl.) 52, 67 (1979)

    Google Scholar 

  16. Langlet, J., Claverie, P., Caron, F., Boeuve, J. C.: Int. J. Quantum Chem. 20, 299 (1981)

    Google Scholar 

  17. Melius, C., Goddard III, W.: Phys. Rev. A10, 1528 (1974)

    Google Scholar 

  18. Topiol, S., Moskowitz, J., Newton, M., Jafri, J., Courant Institut of Mathematical Science, ERDA Research and Development Report (COO-3077-105)

  19. Gresh, N., Pullman, A.: Theoret. Chim. (Berl.) 49, 283 (1978)

    Google Scholar 

  20. Hamilton, W., La Placa, S.: Acta Crystallographica B24, 1147 (1968)

    Google Scholar 

  21. Edmonds, J., La Placa, W.: Acta Crystallographica B28, 1362 (1972)

    Google Scholar 

  22. Arnott, S., Chandrasekaran, R., Birdsall, D., Leslie, A., Ratliff, R.: Nature 283, 743 (1980)

    Google Scholar 

  23. Giessner-Prettre, C., Pullman, B.: Biochem. Biophys. Res. Comm. 107, 1539 (1982)

    Google Scholar 

  24. Pullman, A., Zakrzewska, K., Perahia, D.: Int. J. Quantum Chem. 16, 395 (1979)

    Google Scholar 

  25. Pullman, B., Gresh, N., Berthod, H., Pullman, A.: Theoret. Chim. Acta (Berl.) 44, 151 (1977)

    Google Scholar 

  26. Maeder-Vigne, F., Claverie, P.: to be published.

  27. Fletcher, R.: FORTRAN Subroutines for Minimization by Quasi Newton Methods A.I.R.E. Report R 7125 (1972)

  28. Lavery, R., Pullman, B.: Nucl. Acids Res. 9, 3765 (1981)

    Google Scholar 

  29. Lavery, R., Zakrzewska, K., Pullman, B.: Biophys. Chem. 15, 343 (1982)

    Google Scholar 

  30. Cauchy, D., Lavery, R., Pullman, B.: Theoret. Chim. Acta (Berl.) 57, 323 (1980)

    Google Scholar 

  31. Langlet, G.: J. Appl. Crystallogr. 5, 66 (1972)

    Google Scholar 

  32. Veillard, H.: J. Am. Chem. Soc. 99, 7194 (1977)

    Google Scholar 

  33. Berthod, H., Pullman, A., Pullman, B.: Int. J. Quantum Chem., Quantum Biol. Symp. 5, 79 (1978)

    Google Scholar 

  34. Nuss, M., Marsh, F., Kollman, P.: J. Am. Chem. Soc. 101, 825 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gresh, N., Pullman, B. A theoretical study of the relative affinities of an aliphatic and an aromatic bisguanylhydrazone for the minor groove of double-stranded (dA-dT) n oligomers. Theoret. Chim. Acta 64, 383–395 (1984). https://doi.org/10.1007/BF00548948

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00548948

Key words

Navigation