Skip to main content
Log in

Theoretical study of reaction mechanisms for the ketonization of vinyl alcohol in gas phase and aqueous solution

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Theoretical ab initio calculations are done on different mechanisms for the conversion of vinyl alcohol to acetaldehyde, both in gas phase and in solution. Several basis sets are used in order to assess the accuracy of the results in gas phase and a continuum model of the solvent is employed to mimic reactions in water solution. The results indicate a catalytic action of water in hydrated clusters in gas phase, whereas in solution, and within the error limits of our calculations, both neutral water-chain and ionic mechanisms appear to be equally probable. Finally, the action of acids or bases is tested through the analysis of the reaction of vinyl alcohol with H3O+ and HO. The results of the calculations are shown to be in qualitative agreement with the experimental facts when 6-31++G basis set is used but not when either STO-3G or 4-31G basis sets are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Lledós A, Bertrán J, Ventura ON Int J Quantum Chem, in press

  2. Lledós A, Bertrán J (1981) Tetrahedron Lett 775

  3. Bertrán J, Lledós A, Revellat JA (1983) Int J Quantum Chem 23:587

    Google Scholar 

  4. Lledós A, Bertrán J (1984) J Mol Struct 107:233

    Google Scholar 

  5. Lledós A, Bertrán J (1985) J Mol Struct 120:73

    Google Scholar 

  6. Ventura ON, Bartolucci JP (1984) Theor Chim Acta 64:229 and references therein

    Google Scholar 

  7. Muñiz MA, Bertrán J, Andrés JL, Durán M, Lledós A (1985) J Chem Soc Faraday Trans 1 81:1547

    Google Scholar 

  8. Newton MD (1977) J Chem Phys 67:5535

    Google Scholar 

  9. Toullec J (1982) Adv Phys Org Chem 18:1

    Google Scholar 

  10. Hart H (1979) Chem Rev 79:515

    Google Scholar 

  11. Saito S (1976) Chem Phys Lett 42:399

    Google Scholar 

  12. Blank B, Fischer H (1973) Helv Chim Acta 56:506

    Google Scholar 

  13. Blank B, Henne A, Laroff GP, Fischer H (1975) Pure Appl Chem 41:475

    Google Scholar 

  14. Capon B, Rycroft DS, Watson TW, Zucco C (1981) J Am Chem Soc 103:1761

    Google Scholar 

  15. Capon B, Zucco C (1982) J Am Chem Soc 104:7567

    Google Scholar 

  16. Guthrie JP, Cullimore PA (1979) Can J Chem

  17. Guthrie JP (1979) Can J Chem 57:797

    Google Scholar 

  18. Guthrie JP (1979) Can J Chem 57:1177

    Google Scholar 

  19. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Google Scholar 

  20. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Google Scholar 

  21. Radom L (1977) Mod Theor Chem 4:333

    Google Scholar 

  22. Chandrasekhar J, Andrade JG, Ragué-Schleyer PV (1981) J Am Chem Soc 103:5609 and references therein

    Google Scholar 

  23. Cao HZ, Tapia O, Evleth EM (1985) J Phys Chem 89:1581

    Google Scholar 

  24. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Google Scholar 

  25. Hehre WJ, Ditchfield R, Pople JA (1972) 56:2257

  26. Boggs JE, Cordell FR (1981) J Mol Struct 76:329

    Google Scholar 

  27. Flament JP (1984) J Chim Phys 81:673

    Google Scholar 

  28. Likas SG, Liebman JF, Levin RD (1984) J Phys Chem Ref Data 13:695

    Google Scholar 

  29. Schlegel HB (1982) J Comp Chem 3:214

    Google Scholar 

  30. Schlegel HB (1984) Theor Chim Acta 66:333

    Google Scholar 

  31. Binkley JS, Whiteside RA, Krishnan R, Seeger R, Defrees DI, Shlegel HB, Topiol S, Kahn LR,Pople JA (1980) QCPE 13:406

    Google Scholar 

  32. Fletcher R (1980) Practical methods of optimization, vol. 1. Wiley, Chichester

    Google Scholar 

  33. Peterson MR, Poirier RA: MONSTERGAUSS, Department of Chemistry, University of Toronto, Canada

  34. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Google Scholar 

  35. Hehre WJ, Lathan WA, Ditchfield R, Newton MD, Pople JA (1973) QCPE 11:236

    Google Scholar 

  36. Bonaccorsi R, Palla P, Tomasi J (1984) J Am Chem Soc 106:1945

    Google Scholar 

  37. In a typical calculation, no more than 10 points were skipped due to this safeguard

  38. Pierotti RA (1976) Chem Rev 76:717

    Google Scholar 

  39. Halicioglu T, Sinanoglu O (1969) Ann NY Acad Sci 158:308

    Google Scholar 

  40. Hirschfelder JO, Stevenson PP, Eyring H (1937) J Chem Phys 5:896

    Google Scholar 

  41. Bondi A (1954) J Phys Chem 58:929

    Google Scholar 

  42. Dugben AJ, Miertus S (1982) Chem Phys Lett 88:395

    Google Scholar 

  43. Huron MJ, Claverie P (1972) J Phys Chem 76:2123

    Google Scholar 

  44. Miertus S, Tomasi J (1982) Chem Phys 65:239

    Google Scholar 

  45. Bonaccorsi R, Cimiraglia R, Tomasi J (1983) Chem Phys Lett 99:77

    Google Scholar 

  46. Moelwyn-Hughes EA 1965 Physical chemistry. Pergamon Press, Oxford

    Google Scholar 

  47. Buttery RG, Ling LC, Guadangni DG (1969) J Agro Food Chem 17:385

    Google Scholar 

  48. Cabani S, Gianni P, Mollica V, Lepori L (1981) J Solution Chem 10:563

    Google Scholar 

  49. Spangler D, Williams IH, Maggiora GM (1983) J Comput Chem 4:524

    Google Scholar 

  50. Clavero C, Lledós A, Durán M, Ventura ON, Bertrán J (1986) J Am Chem Soc 108:923

    Google Scholar 

  51. Clavero C, Lledós A, Durán M, Ventura ON, Bertrán J J Comput Chem: to be published

  52. Rodwell WR, Bouma WJ, Radom L (1980) Int J Quantum Chem 18:107

    Google Scholar 

  53. Interatomic Distances Supplement, Esp. Publ. No 18, Chem Soc, London, 1965

  54. Harmony MD, Laurie VW, Kuezkowski RL, Schwendeman RH, Ramsay DA, Lovas FJ, Lafferty WJ, Maki AG (1979) J Phys Chem Ref Data 8:619

    Google Scholar 

  55. Symons MCR (1980) J Am Chem Soc 102:3982

    Google Scholar 

  56. Blank B, Fischer H (1973) Helv Chim Acta 56:506

    Google Scholar 

  57. Kilb RW, Lin CC, Wilson Jr EB (1957) J Chem Phys 26:1695

    Google Scholar 

  58. Pascual Ahuir JL, Silla E, Tomasi J, Bonaccorsi R: to be published

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, O.N., Lledós, A., Bonaccorsi, R. et al. Theoretical study of reaction mechanisms for the ketonization of vinyl alcohol in gas phase and aqueous solution. Theoret. Chim. Acta 72, 175–195 (1987). https://doi.org/10.1007/BF00527661

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527661

Key words

Navigation