Skip to main content
Log in

Size-consistent single-reference methods for electronic correlation: a unified formulation through intermediate hamiltonian theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Using the intermediate hamiltonian theory as a unique conceptual frame and the technique of CI matrix dressing, a wide series of single-reference methods for the treatment of the ground state correlation are reviewed, compared, and sometimes improved. These methods range from independent excitation approximation (the very next step beyond MP2) to coupled cluster, going through the so-called electron pair approximations and the (SC)2CI formalism. A hierarchy of these methods can be established according to two criteria:

  1. 1.

    The physical effects incorporated in the model space, the choice of which is flexible.

  2. 2.

    The quality of the evaluation of the coefficients of the external space determinants. This evaluation, which remains based on a single reference expansion of the wave function, may simply ensure the size consistency or incorporate the linked contributions from the outer space.

These formulations in terms of diagonalizations of dressed CI matrices avoid convergence problems, but their main advantage is their flexibility, since they apply to multi-reference SDCI spaces as well as to SDCI spaces. The use of a common frame allows one to propose consistent combinations of methods of various costs for the treatment of various parts of the correlation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartree DR (1928) Proc Camb Phil Soc 24:89

    CAS  Google Scholar 

  2. Hartree DR (1928) Proc Camb Phil Soc 24:111

    CAS  Google Scholar 

  3. Hartree DR (1928) Proc Camb Phil Soc 24:426

    CAS  Google Scholar 

  4. Fock V (1930) Z Phys 61:126

    Google Scholar 

  5. Harrison RJ, Handy N (1983) Chem Phys Lett 98:97

    Article  CAS  Google Scholar 

  6. Olsen J, Roos BD, Jørgensen P, Hensen HJ (1988) J Chem Phys 89:2185

    Article  CAS  Google Scholar 

  7. Knowles PJ, Handy NC (1989) J Chem Phys 91:2396

    Article  CAS  Google Scholar 

  8. Bauschlicher CW, Langhoff SR, Taylor PR (1990) Adv Chem Phys 77:103

    CAS  Google Scholar 

  9. Bendazzoli GL, Evangelisti S (1993) J Chem Phys 98:3141

    Article  CAS  Google Scholar 

  10. Evangelisti S, Bendazzoli GL, Gagliardi L (1994) Chem Phys 185:47

    Article  CAS  Google Scholar 

  11. Goldstone J (1957) Proc Roy Soc London A 239:267

    Google Scholar 

  12. Brandow BH (1967) Rev Mod Phys 39:771

    Article  CAS  Google Scholar 

  13. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    Article  CAS  Google Scholar 

  14. Ahlrichs R, Scharf P, Ehrhardt C (1985) J Chem Phys 82:890

    Article  CAS  Google Scholar 

  15. Kelly HP, Sessler MA (1963) Phys Rev 132:2091

    Article  CAS  Google Scholar 

  16. Kelly HP, Sessler MA (1964) Phys Rev A 134:1450

    Google Scholar 

  17. Meyer W (1971) Int J Quantum Chem 5:341

    Google Scholar 

  18. Coester F (1958) Nucl Phys 1:421

    Google Scholar 

  19. Coester F, Kummel H (1960) Nucl Phys 17:477

    CAS  Google Scholar 

  20. Čížek J (1966) J Chem Phys 45:4256

    Google Scholar 

  21. Čížek J, Paldus J (1971) Int J Quantum Chem 5:359

    Google Scholar 

  22. Paldus J, Čížek J, Shavitt I (1972) Phys Rev A 5:50

    Article  Google Scholar 

  23. Bartlett RJ (1989) J Phys Chem 93:1697

    Article  CAS  Google Scholar 

  24. Daudey JP, Heully JL, Malrieu JP (1993) J Chem Phys 99:1240

    Article  CAS  Google Scholar 

  25. Malrieu JP, Nebot-Gil I, Sánchez-Marin J (1994) J Chem Phys 100:1440

    Article  CAS  Google Scholar 

  26. Nebot-Gil I, Sánchez-Marin J, Malrieu JP, Heully JL, Maynau D (1995) J Chem Phys 103:2576

    Article  CAS  Google Scholar 

  27. Malrieu JP, Durand P, Daudey JP (1985) J Phys A, Math Gen 18:809

    Article  CAS  Google Scholar 

  28. Durand P, Malrieu JP (1987) In: Lawley (ed) Ab initio methods in quantum chemistry, Part I. Wiley, Chichester, pp 321–412

    Google Scholar 

  29. Mukhopadhyay D, Datta B, Mukherjee D (1992) Chem Phys Lett 197:236

    Article  Google Scholar 

  30. Zaitsevskii AV, Heully JL (1993) J Phys B 25:603

    Google Scholar 

  31. Meissner L, Nooijen M (1995) J Chem Phys 102:9604

    CAS  Google Scholar 

  32. Lepetit MB, Malrieu JP (1993) Chem Phys Lett 208:503

    Article  CAS  Google Scholar 

  33. Sinanoglu O (1964) Adv Chem Phys 6:315

    CAS  Google Scholar 

  34. Nesbet RK (1965) Adv Chem Phys 9:321

    CAS  Google Scholar 

  35. Heully JL, Malrieu JP (1992) Chem Phys Lett 199:545

    Article  CAS  Google Scholar 

  36. Nietsche LE, Davidson ER (1978) J Chem Phys 68:3103

    Google Scholar 

  37. Nietsche LE, Davidson ER (1978) J Am Chem Soc 100:7201

    Google Scholar 

  38. Davidson ER, McMurchie LB, Day SJ (1981) J Chem Phys 74:5491

    CAS  Google Scholar 

  39. Nebot-Gil I, Sánchez-Marin J, Heully JL, Malrieu JP, Maynau D (1995) Chem Phys Lett 234:45

    Article  CAS  Google Scholar 

  40. Adamowicz L, Malrieu JP J Chem Phys, in press

  41. Heully JL, Malrieu JP, Nebot-Gil I, Sánchez-Marin J (1996) Chem Phys Lett 256:589

    Article  CAS  Google Scholar 

  42. Szabo A, Ostlund NS (1990) Modern quantum chemistry. Macmillan, New York.

    Google Scholar 

  43. Raghavachari K (1991) Ann Rev Phys Chem 42:615

    Article  CAS  Google Scholar 

  44. Meyer W (1973) J Chem Phys 58:1017

    Article  CAS  Google Scholar 

  45. Ahlrichs R, Scharf P (1987) In: Lawley(ed) Ab initio methods in quantum chemistry, Part I. Wiley, Chichester, pp 501–537

    Google Scholar 

  46. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  47. Lee YS, Kucharski SA, Bartlett RJ (1984) J Chem Phys 81:5906

    Google Scholar 

  48. Assfeld X, Almlöf JE, Truhlar DG (1995) Chem Phys Lett 241:438

    Article  CAS  Google Scholar 

  49. Lepetit MB, Malrieu JP (1987) J Chem Phys 87:5937

    Article  CAS  Google Scholar 

  50. Meyer W (1974) Theor Chim Acta 35:277

    Article  CAS  Google Scholar 

  51. Malrieu JP, Daudey JP, Caballol R (1994) J Chem Phys 101:8908

    Article  CAS  Google Scholar 

  52. Meller J, Malrieu JP, Heully JL (1995) Chem Phys Lett 244:440

    Article  CAS  Google Scholar 

  53. Practical applications (see Refs. [25,26]) have revealed that numerical stability advises to select a first column dressing (cf. Eq. (19)), in order to avoid the occurrence of some very small denominatorsc i in Eq. (18). However, this would result in a non-HermitianH + Δ operator. A first-row + first-column dressing, which is Hermitian and good for numerical purposes, is then recommended (see Ref. [26])

  54. Epstein PS (1926) Phys Rev 28:690

    Article  Google Scholar 

  55. Nesbet RK (1955) Proc R Soc London, Ser A 230:312

    Google Scholar 

  56. Nesbet RK (1955) Proc Roy Soc London, Ser A 230:912

    Google Scholar 

  57. Arrighini P (1981) Intermolecular forces, their evaluation by perturbation theory. In: Berthier, Dewar, Fischer, Fukui, Hall, Hartmann, Jaffé, Jortner, Kutzelnigg, Ruedenberg, Scrocco (eds) Lecture Notes in Chemistry, Vol 25. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  58. Lindgren I, Morrison J (1986) Atomic many-body theory. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  59. Gershgorn Z, Shavitt T (1968) Int J Quantum Chem 2:751

    CAS  Google Scholar 

  60. Bachrach SM, Chiles RA, Dykstra CE (1981) J Chem Phys 75:2270

    Article  CAS  Google Scholar 

  61. Čížek J, Paldus J (1971) Phys Rev A 3:525

    Google Scholar 

  62. Paldus J (1992) In: Wilson, Diercksen (eds) Methods in Computational Molecular Physics, NATO ASI Series, Series B, Physics, Vol 293. Plenum Press, New York, pp 99–194

    Google Scholar 

  63. Kutzelnigg W (1977) In: Schaefer (ed) Methods of electronic structure theory, modern theoretical chemistry, Vol 3. Plenum Press, New York, pp 129–188

    Google Scholar 

  64. See Ref. [43] and references therein in relation with comparing QCI and CC formalisms

  65. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  66. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  67. Lee TJ, Scuseria GE (1990) J Chem Phys 93:489

    CAS  Google Scholar 

  68. Watts JD, Cernusák I, Noga J, Bartlett RJ, Bauschlicher CW, Lee TJ, Rendell AP, Taylor PR (1990) J Chem Phys 93:8875

    CAS  Google Scholar 

  69. Sánchez-Marin J, Nebot-Gil I, Maynau D, Malrieu JP (1995) Theor Chim Acta 92:241

    Google Scholar 

  70. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513

    Article  CAS  Google Scholar 

  71. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 167:609

    CAS  Google Scholar 

  72. Noga J, Bartlett RJ (1987) J Chem Phys 86:7041

    Article  CAS  Google Scholar 

  73. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

    Article  CAS  Google Scholar 

  74. Sánchez-Marin J, Maynau D, Malrieu JP (1993) Theor Chim Acta 87:107

    Google Scholar 

  75. Meller J, Caballol R, Malrieu JP (1996) J Chem Phys 104:4068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Marín, J., Nebot-Gil, I., Malrieu, J.P. et al. Size-consistent single-reference methods for electronic correlation: a unified formulation through intermediate hamiltonian theory. Theoret. Chim. Acta 95, 215–241 (1996). https://doi.org/10.1007/BF02335465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02335465

Key words

Navigation