Skip to main content

Advertisement

Log in

Studies of the production and subsequent reduction of swelling in primate cerebral cortex under isosmotic conditionsin vivo

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    The swelling of intact primate cerebral cortex perfused under isosmotic conditionsin vivo, like swelling of slices of mammalian cerebral cortex incubatedin vitro, is a linear function of the concentration of K+ in the extracellular fluid over the range 20–120 mM.

  2. 2.

    The simultaneous presence of the Cl ion is required for the development of K+-dependent swelling of cerebral cortex under various experimental conditionsin vivo andin vitro.

  3. 3.

    The maintenance of previously established K+-dependent swelling of cerebral cortex bothin vitro andin vivo requires the relative concentrations of both K+ and Cl in the extracellular fluid to remain constant. A reduction in the concentration of either ion is associated with an absolute loss of fluid of swelling of cerebral cortex.

  4. 4.

    The content of Cl in cerebral cortex is a function of the magnitude of K+-dependent swelling even though the concentration of Cl in the extracellular fluid is maintained constant.

  5. 5.

    The mechanism of swelling in primate cerebral cortex following cerebral circulatory arrest is discussed in the light of the experimental findings, as a model of the type of brain injury encountered in massive clinical stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, A., Isom, J.B., Nesbett, F.B.: Effects of osmotic changes on water and electrolytes in nervous tissue. J. Physiol. (Lond.)177, 246–262 (1965).

    Google Scholar 

  • Bekaert, J., Demeester, G.: Influence of potassium concentration of the blood on the potassium level of the cerebrospinal fluid. Exp. Med. Surg.12, 480–501 (1954).

    CAS  PubMed  Google Scholar 

  • Bennett, H.S., Luft, J.H.: s-Collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol.6, 113–114 (1964).

    Google Scholar 

  • Boretos, J.W., Bourke, R.S., Nelson, K.M., Naumann, R.A.: The isolated subarachnoid space in the intact primate. J. appl. Physiol. (1970) [in press].

  • Bourke, R.S.: Evidence for mediated transport of chloride in cat cerebral cortexin vitro. Exp. Brain Res.8, 219–231 (1969a).

    CAS  Google Scholar 

  • —: Studies of the development and subsequent reduction of swelling of mammalian cerebral cortex under isosmotic conditionsin vitro. Exp. Brain Res.8, 232–248 (1969b).

    CAS  Google Scholar 

  • —, Gablenick, H.L., Young, O.: Mediated transport of chloride from blood into cerebrospinal fluid. Exp. Brain Res.10, 17–38 (1970).

    Article  CAS  PubMed  Google Scholar 

  • —, Greenberg, E.S., Tower, D.B.: Variation of cerebral cortex fluid spaces invivo as a function of species brain size. Amer. J. Physiol.208, 682–692 (1965).

    CAS  PubMed  Google Scholar 

  • —, Tower, D.B.: Fluid compartmentation and electrolytes of cat cerebral cortexin vitro. I. Swelling and solute distribution in mature cerebral cortex. J. Neurochem.13, 1070–1094 (1966a).

    Google Scholar 

  • — —: Fluid compartmentation and electrolytes of cat cerebral cortexin vitro. II. Sodium, potassium and chloride of mature cerebral cortex. J. Neurochem.13, 1099–1117 (1966b).

    CAS  Google Scholar 

  • Boyle, P.J., Conway, E.J.: Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.)100, 1–63 (1941).

    CAS  Google Scholar 

  • Cotlove, E.: Determination of the true chloride content of biological fluids and tissues. II. Analysis by simple, non-isotopic methods. Anal. Chem.35, 101–105 (1963).

    Google Scholar 

  • —, Trantham, H.V., Bowman, R.L.: An instrument and method for automatic, rapid, accurate, and sensitive titration of chloride in biologic samples. J. Lab. clin. Med.51, 461–468 (1956).

    Google Scholar 

  • Cserr, H.: Potassium exchange between cerebrospinal fluid, plasma, and brain. Amer. J. Physiol.209, 1219–1226 (1965).

    CAS  PubMed  Google Scholar 

  • Elliott, K.A.C.: Brain tissue respiration and glycolysis. In: Neurochemistry, pp. 63–93. Ed. by K.A.C. Elliott, I.H. Page and J.H. Quastel. Springfield/Ill.: Charles C. Thomas 1955.

    Google Scholar 

  • —, Jasper, H.: Measurement of experimentally induced brain swelling and shrinkage. Amer. J. Physiol.157, 122–129 (1949).

    Google Scholar 

  • Erlandson, R.A.: A new Maraglas, D.E.R. 732, embedment for electron microscopy. J. Cell. Biol.22, 704 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Fencl, V., Miller, T.B., Pappenheimer, J.R.: The respiratory response to disturbances of acid-base balance. In: Head Injury, pp. 414–430. Ed by. W. Caveness and A.E. Walker. Philadelphia: J.B. Lippincott Co. 1966.

    Google Scholar 

  • Frankenhaeusser, B., Hodgkin, A.L.: The after-effects of impulse in the giant fibers ofLoligo. J. Physiol. (Lond.)131, 341–376 (1956).

    Google Scholar 

  • Goodman, H.O., Wainer, A., King, Jr., J.S., Thomas, J.J.: [35S] 2-hydroxyethanesulfonic acid (isethionic acid) in urine of human subjects given [35S] taurine. Proc. Soc. exp. Biol. (N.Y.)125, 109–113 (1967).

    CAS  Google Scholar 

  • Greengard, P., Straub, R.W.: After potentials in mammalian non-myelinated nerve fibers. J. Physiol. (Lond.)144, 442–462 (1968).

    Google Scholar 

  • Jacobsen, J.G., Collins, L.L., Smith, Jr., L.H.: Urinary excretion of isethionic acid in man. Nature (Lond.)214, 1247–1248 (1967).

    CAS  Google Scholar 

  • Keynes, R.D., Lewis, P.R.: The sodium and potassium content of cephalopod nerve fibers. J. Physiol. (Lond.)114, 151–182 (1951).

    CAS  Google Scholar 

  • —, Ritchie, J.M.: The movements of labelled ions in mammalian nonmyelinated nerve fibers. J. Physiol. (Lond.)179, 333–367 (1965).

    CAS  Google Scholar 

  • Koechlin, B.A.: On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J. biophys. biochem. Cytol.1, 511–529 (1955).

    CAS  PubMed  Google Scholar 

  • Nicholls, J.G., Kuffler, S.W.: Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech. Ionic composition of glial cells and neurons. J. Neurophysiol.27, 645–671 (1964).

    CAS  PubMed  Google Scholar 

  • Ommaya, A.K., Boretos, J.W., Beile, E.E.: The Lexan calvarium: an improved method for direct observation of the brain. J. Neurosurg.30, 25–29 (1969).

    CAS  PubMed  Google Scholar 

  • Orkand, R.K., Nicholls, J.G., Kuffler, S.W.: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system in amphibia. J. Neurophysiol.29, 788–806 (1966).

    CAS  PubMed  Google Scholar 

  • Pappius, H.M., Elliott, K.A.C.: Water distribution in incubated slices of brain and other tissues. Canad. J. Biochem.34, 1007–1022 (1956).

    CAS  PubMed  Google Scholar 

  • Peck, E.J., Awapara, J.: Metabolism of sulfur amino acids in rat brain. Fed. Proc.25, 642 (1966).

    Google Scholar 

  • Rang, H.P., Richie, J.M.: On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.)196, 183–221 (1968).

    CAS  Google Scholar 

  • Read, W.O., Welty, J.D.: Synthesis of taurine and isethionic acid by dog heart slices. J. biol. Chem.237, 1521–1522 (1962).

    CAS  PubMed  Google Scholar 

  • Ritchie, J.M., Straub, R.W.: The after-effects of repetitive stimulation on mammalian non- medullated fibers. J. Physiol. (Lond.)134, 698–711 (1956).

    CAS  Google Scholar 

  • Tower, D.B.: The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubatedin vitro. J. Neurochem.3, 185–205 (1958).

    CAS  PubMed  Google Scholar 

  • —: Arrest of sizure activity: biochemical aspects and pharmacology. Epilepsia6, 141–155 (1965).

    Google Scholar 

  • —: Distribution of cerebral fluids and electrolytesin vivo andin vitro. In: Brain edema, pp. 303–332. Ed. by I. Klatzo and F. Seitelberger. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • —, Bourke, R.S.: Fluid compartmentation and electrolytes of cat cerebral cortexin vitro. III. Ontogenetic and comparative aspects. J. Neurochem.13, 1119–1137 (1966).

    CAS  PubMed  Google Scholar 

  • Varon, S., McIlwain, H.: Fluid content and compartments in isolated cerebral tissues. J. Neurochem.8, 262–275 (1961).

    CAS  PubMed  Google Scholar 

  • Wallace, G.B., Brodie, B.B.: The distribution of iodide, thiocyanate, bromide and chloride in the central nervous system and spinal fluid. J. Pharmacol. exp. Ther.65, 220–226 (1939).

    CAS  Google Scholar 

  • Welty, J.D., Reed, W.O., Shaw, E.H.: Isolation of 2-hydroxy-ethane-sulfonic acid (Isethionic acid) from dog heart. J. biol. Chem.237, 1160–1161 (1962).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourke, R.S., Nelson, K.M., Naumann, R.A. et al. Studies of the production and subsequent reduction of swelling in primate cerebral cortex under isosmotic conditionsin vivo . Exp Brain Res 10, 427–446 (1970). https://doi.org/10.1007/BF02324768

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02324768

Key Words

Navigation