Skip to main content
Log in

Alkylxanthine adenosine antagonists and epileptiform activity in rat hippocampal slices in vitro

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Despite its potent proconvulsant effects in vitro, the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) does not induce seizures when administered in vivo. This contrasts with the effects of less selective adenosine antagonists such as theophylline or cyclopentlytheophylline, and led us to reexamine the nature of DPCPX-induced epileptiform activity. In the present study, we report that proconvulsant effects of bath-applied DPCPX in rat hippocampal slices are only observed after a preceding stimulus such as NMDA receptor activation or brief tetanic stimulation. While this may be due to the absence of a basal “purinergic tone”, the relatively high interstitial concentrations of adenosine present in the slice suggest that access of the drug to A1 receptors may instead be prevented by tightly coupled endogenous adenosine, with the ternary adenosine-A1 receptor-G protein complex stabilised in the high-affinity conformation by a coupling cofactor. This implies that a substantial percentage of adenosine A1 receptors are inactive under physiological conditions, but that access of adenosine A1 receptor antagonists may be facilitated under pathological conditions. Once induced, DPCPX-evoked spiking persists for long periods of time. A “kindling” effect of A1 receptor blockade is unlikely, since persistent spiking is not usually observed with less selective A1 antagonists even after prolonged application. Alternatively, endogenous adenosine released during increased neuronal activity may activate A2 receptors during selective A1 blockade. The most important factor determining the duration of DPCPX-induced spiking, however, may be a persistence of the drug in the tissue and subsequent access to the A1 receptor via a membrane-delineated pathway, since DPCPX-induced spiking could be shown to decrease markedly after a transient superfusion of theophylline. This hypothesis, which implies that the apparent affinity of adenosine antagonists for the A1 receptor is in part a function of their membrane partitioning coefficient, is supported by a close correlation between alkylxanthine logP values obtained from the literature and theirK i value at A1 receptors, but not at the enzyme phosphodiesterase, whose xanthine binding site is presented to the cytosol. The implications for the therapeutic value of purinergic drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alzheimer C, Sutor B, Bruggencate G ten (1989) Transient and selective blockade of adenosine A1-receptors by DPCPX causes sustained epileptiform activity in hippocampal CA3 neurones of guinea pigs. Neurosci Lett 99: 107–112

    Article  PubMed  CAS  Google Scholar 

  • Ault B, Olney MA, Joyner JL, Boyer CE, Notrica MA, Soroko FE, Wang CM (1987) Pro-convulsant actions of theophylline and caffeine in the hippocampus — implications for the management of temporal lobe epilepsy. Brain Res 426: 93–102

    Article  PubMed  CAS  Google Scholar 

  • Bahls FH, Ma KK, Bird TD (1991) Theophylline-associated seizures with “therapeutic” or low toxic serum concentrations: risk factors for serious outcomes in adults. Neurology 41: 1309–1312

    PubMed  CAS  Google Scholar 

  • Ball DI, Brittain RT, Coleman RA, Denyer LH, Jack D, Johnson M, Lunts LHC, Nials AT, Sheldrick KE, Skidmore IF (1991) Salmeterol, a novel, long-acting β2-adrenoceptor agonist —characterization of pharmacological activity in vitro and in vivo. Br J Pharmacol 104: 665–671

    PubMed  CAS  Google Scholar 

  • Baumgold J, Nikodijevic O, Jacobson KA (1992) Penetration of adenosine antagonists into mouse brain as determined by ex vivo binding. Biochem Pharmacol 43: 889–894

    Article  PubMed  CAS  Google Scholar 

  • Bertorelli R, Ferri N, Adami M, Ongini E (1996) Effects of selective agonists and antagonists for A1 or A2a adenosine receptors on sleep waking patterns in rats. Drug Dev Res 37: 65–72

    Article  CAS  Google Scholar 

  • Bisserbe JC, Pascal O, Deckert J, Maziere B (1992) Potential use of DPCPX as probe for in vivo localization of brain A1 adenosine receptors. Brain Res 599: 6–12

    Article  PubMed  CAS  Google Scholar 

  • Boissard CG, Gribkoff VK (1993) The effects of the adenosine reuptake inhibitor soluflazine on synaptic potentials and population hypoxic depolarizations in area CA1 of rat hippocampus in vitro. Neuropharmacology 32: 149–155

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Nicoll R (1993) Molecular machines integrate coincident synaptic signals. Cell 79: 59–68

    Google Scholar 

  • Bruns RF, Fergus JH (1990) Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol Pharmacol 38: 939–949

    PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labelled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29: 331–346

    PubMed  CAS  Google Scholar 

  • Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, Hays SJ, Huang CC (1987) Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Arch Pharmacol 335: 59–63

    Article  CAS  Google Scholar 

  • Chen Y, Graham DI, Stone TW (1992) Release of endogenous adenosine and its metabolites by the activation of NMDA receptors in the rat hippocampus in vivo. Br J Pharmacol 106: 632–638

    PubMed  CAS  Google Scholar 

  • Chu NS (1981) Caffeine- and aminophylline-induced seizures. Epilepsia 22: 85–94

    PubMed  CAS  Google Scholar 

  • Collis MG, Hourani SM (1993) Adenosine receptor subtypes. TiPS 14: 360–366

    PubMed  CAS  Google Scholar 

  • Dawid-Milner MS, Silva-Carvalho L, Goldsmith GR, Spyer KM (1994) A potential role of central A1 adenosine receptors in the responses to hypothalamic stimulation in the anaesthesized cat. J Autonom Nerv Syst 49: 15–19

    Article  CAS  Google Scholar 

  • Delaney SM, Geiger JD (1996) Brain regional levels of adenosine and adenosine nucleotides in rats killed by high-energy focused microwave irradiation. J Neurosci methods 64: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Donoso P, O'Neill SC, Dilly KW, Negretti N, Eisner DA (1994) Comparison of the effects of caffeine and other methylxanthines on [Ca2+]i in rat ventricular myocytes. Br J Pharmacol 111: 455–458

    PubMed  CAS  Google Scholar 

  • Dragunow M, Goddard GV, Laverty R (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26: 480–487

    PubMed  CAS  Google Scholar 

  • Dragunow M, Goddard GV, Laverty R (1987) Proconvulsant effects of theophylline on hippocampal afterdischarges. Exp Neurol 96: 732–735

    Article  PubMed  CAS  Google Scholar 

  • Francis A, Fochtmann L (1994) Caffeine augmentation of electroconvulsive seizures. Psychopharmacology (Berl) 115: 320–324

    Article  CAS  Google Scholar 

  • Garaschuk O, Kovalchuk, Krishtal O (1992) Adenosine-dependent enhancement by methylxanthines of excitatory transmission in hippocampus of rats. Neurosci Lett 135: 10–12

    Article  PubMed  CAS  Google Scholar 

  • Gerwins P, Nordstedt C, Fredholm BB (1990) Characterization of adenosine A1 receptors in intact DD1 MF-2 smooth muscle cells. Mol Pharmacol 38: 660–666

    PubMed  CAS  Google Scholar 

  • Griebel R, Saffroy-Spittler M, Misslin R, Remmy D, Vogel E, Bourguignon J (1991) Comparison of the behavioural effects of an adenosine A1/A2-receptor antagonist, CGS 15943A, and an A1-selective antagonist, DPCPX. Psychopharmacology (Berl) 103: 541–544

    Article  CAS  Google Scholar 

  • Hansch C, Steward AR, Anderson SM, Bentley D (1968) The parabolic dependence of drug action upon lipophilic character as revealed by a study of hypnotics. J Med Chem 11: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Herbette LG, Vant Erve YMH, Rhodes DG (1989) Interaction of 1,4-dihydropyridine calcium channel antagonists with biological membranes — lipid bilayer partitioning could occur before drug binding to receptors. J Mol Cell Cardiol 21: 187–201

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Kurihara E, Okada Y (1994) Excitatory effects of adenosine receptor agonists and antagonists on neurotransmission in guinea pig superior collicular slices. Neurosci Lett 171: 129–132

    Article  PubMed  CAS  Google Scholar 

  • Klishin A, Tsintsadze T, Lozovaya N, Krishtal OA (1995) Latent NMDA receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)-dependent activation by blocking A(1) adenosine receptors. Proc Natl Acad Sci USA 92: 12431–12435

    Article  PubMed  CAS  Google Scholar 

  • Knight RJ, Bowmer CJ, Yates MS (1993) The diuretic action of DPCPX, a selective A1 adenosine receptor antagonist. Br J Pharmacol 109: 271–277

    PubMed  CAS  Google Scholar 

  • Kostopulos G, Veronikis DK, Efthimiou I (1987) Caffeine blocks absence seizures in the tottering mutant mouse. Epilepsia 28: 415–420

    Google Scholar 

  • Kuan C, Herzer WA, Jackson EK (1992) An experimental paradigm for investigating the role of endogenous adenosine/A1 receptor interactions in vivo. J Pharmacol Exp Ther 263: 657–662

    PubMed  CAS  Google Scholar 

  • Lobban M, Shakur Y, Beattie J, Houslay MD (1994) Identification of two splice variant forms of type IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J 304: 399–406

    PubMed  CAS  Google Scholar 

  • Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) DPCPX — a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 336: 204–210

    Article  PubMed  CAS  Google Scholar 

  • Lurie SN, Coffey CE (1990) Caffeine-modified electroconvulsive therapy in depressed patients with medical illness. J Clin Psychiatry 51: 154–157

    PubMed  CAS  Google Scholar 

  • Mogul DJ, Adams ME, Fox AP (1993) Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurones. Neuron 10: 327–334

    Article  PubMed  CAS  Google Scholar 

  • Morgan PF, Deckert J, Jacobson KA, Marangos PJ, Daly JW (1989) Potent convulsant actions of the adenosine receptor antagonist, xanthine amine congener (XAC). Life Sci 45: 719–728

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Mizutani T, Yoshimura M, Yamanouchi H, Shimada H (1992) Unilateral brain damage after prolonged hemiconvulsions in the elderly associated with theophylline administration. J Neurol Neurosurg Psychiatry 55: 466–469

    PubMed  CAS  Google Scholar 

  • Müller M, Osten B v., Schmid R, Piegler E, Gerngross I, Buchegger H, Eichler HG (1995) Theophylline kinetics in peripheral tissues in vivo in humans. Naunyn Schmiedebergs Arch Pharmacol 352: 438–441

    Article  PubMed  Google Scholar 

  • Munakata M, Akaike N (1993) Theophylline affects three different potassium currents in dissociated rat cortical neurones. J Physiol (Lond) 471: 599–616

    CAS  Google Scholar 

  • Murray TF, Zhang G, Franklin PH (1993) Manipulation of endogenous adenosine affects seizure susceptibility. Drug Dev Res 28: 410–415

    Article  CAS  Google Scholar 

  • Nakagawa Y, Gudenzi M, Mustafa SJ (1986) Calcium entry blocking activity of dilazep and other adenosine potentiating compounds in guinea pig atria. Eur J Pharmacol 122: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Nanoff C, Mitterauer T, Roka F, Hohenegger M, Freissmuth M (1995) Species differences in A1 adenosine receptor/G protein coupling — identification of a membrane protein that stabilizes the association of the receptor/G protein complex. Mol Pharmacol 48: 806–817

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Chu NS (1977) Aminophylline-induced preictal alterations in cortical astrocytes. Exp Neurol 54: 340–351

    Article  PubMed  CAS  Google Scholar 

  • Nowack L, Bregestovski P, Ascher P, Herbert A, Prochianz A (1984) magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–465

    Article  Google Scholar 

  • Ogata T, Nakamura Y, Schubert P (1996) Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca++-related A1/A2 adenosine receptor cooperation. Eur J Neurosci 8: 1124–1131

    Article  PubMed  CAS  Google Scholar 

  • Olpe HR, Steinmann MW, Ferrat T, Pozza MF, Greiner K, Brugger F, Froestl W, Mickel SJ, Bittinger H (1993) The actions of orally available GABAb antagonists on GABAergic transmission in vivo and in vitro. Eur J Pharmacol 233: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (1994) The new biology of adenosine receptors. Adv Enzymol Relat Areas Mol Biol 69: 83–120

    PubMed  CAS  Google Scholar 

  • Parsons WJ, Stiles GL (1987) Heterologous desensitisation of the inhibitory A1 adenosine receptor-adenylate cyclase system in rat adipocytes. J Biol Chem 262: 841–847

    PubMed  CAS  Google Scholar 

  • Parsons WJ, Ramkumar V, Stiles GL (1988) The new cardiotonic agent sulmazole is an adenosine A1 receptor antagonist and functionally blocks the inhibitory regulator Gi. Mol Pharmacol 33: 441–448

    PubMed  CAS  Google Scholar 

  • Peters SG, Wochos DN, Peterson GC (1984) Status epilepticus as a complication of concurrent electroconvulsive and theophylline therapy. Mayo Clin Proc 59: 568–570

    PubMed  CAS  Google Scholar 

  • Prater MR, Taylor H, Munshi R, Linden J (1992) Indirect effect of guanine nucleotides on antagonist binding to adenosine receptors —occupation of cryptic binding sites by endogenous vesicular adenosine. Mol Pharmacol 42: 765–772

    PubMed  CAS  Google Scholar 

  • Prince DA, Stevens CF (1992) Adenosine decreases neurotransmitter release at central synapses. Proc Natl Acad Sci USA 89: 8568–8590

    Article  Google Scholar 

  • Rhodes DG, Sarmiento JG, Herbette LG (1985) Kinetics of binding of membrane-active drugs to receptor sites. Diffusion limited rates for a membrane-bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol 27: 612–623

    PubMed  CAS  Google Scholar 

  • Sakurai T, Okada Y (1992) Excitatory effect of adenosine on neurotransmission and the release of glutamate from hippocampal slices of guinea pig (abstract). J Physiol (Lond) 446: P380

    Google Scholar 

  • Schiemann WP, Walther JM, Buxton ILO (1990) On the ability of endogenous adenosine to regulate purine nucleoside receptor binding of antagonists in smooth muscle cells. J Pharmacol Exp Ther 255: 886–892

    PubMed  CAS  Google Scholar 

  • Starke K, Reimann W, Zumstein A, Hertting G (1978) Effect of dopamine receptor agonists and antagonists on release of dopamine in the rabbit caudate nucleus in vitro. Naunyn Schmiedebergs Arch Pharmacol 305: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Simmonds HA (1991) Purines — basic and clinical aspects. Kluwer, Dordrecht

    Google Scholar 

  • Stroher M, Nanoff C, Schütz W (1989), Differences in the GTP-regulation of membrane-bound and solubilized A1 receptors. Arch Pharmacol 340: 87–92

    CAS  Google Scholar 

  • Swartz CM, Lewis RK (1991) Theophylline reversal of electroconvulsive therapy (ECT) seizure inhibition. Psychosomatics 32: 47–51

    PubMed  CAS  Google Scholar 

  • Wayman GA, Impey S, Wu Z, Kindsvogel W, Prichard L, Storm DR (1994) Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J Biol Chem 269: 25400–25405

    PubMed  CAS  Google Scholar 

  • Weisman RS, Goldfrank LR, Howland MA (1990) Theophylline. In: Goldfrank LR, Flomenbaum NE, Lewin NA, Weisman RS, Howland MA (eds) Goldfrank's toxicologic emergencies, 4th edn. Prentice Hall, London, pp 341–347

    Google Scholar 

  • Wood PL, Kim HS, Boyar WC, Hutchison A (1989) Inhibition of nigrostriatal release of dopamine in the rat by adenosine receptor agonists — A1 receptor mediation. Neuropharmacology 28: 21–25

    Article  PubMed  CAS  Google Scholar 

  • Wu YN, Mercuri NB, Johnson SW (1995) Presynaptic inhibition of gamma-aminobutyric acid B-mediated synaptic current by adenosine recorded in vitro in midbrain dopamine neurons. J Pharmacol Exp Ther 273: 576–581

    PubMed  CAS  Google Scholar 

  • Würl P (1994) Lebensgefährliche Coffeinintoxikation unter Verwendung von Kaffee als Rauschmittel. Wien Klin Wochenschr 106: 359–361

    PubMed  Google Scholar 

  • Young HS, Skita V, Mason RP, Herbette LG (1992) Molecular basis for the inhibition of 1,4-dihydropyridine Ca channel drugs binding to their receptors by a nonspecific site interaction mechanism. Biophys J 61: 1244–1255

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact brain, studied with an implanted perfused hollow fibre. Neurosci Lett 29: 111–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesi, A.J.R., Stone, T.W. Alkylxanthine adenosine antagonists and epileptiform activity in rat hippocampal slices in vitro. Exp Brain Res 113, 303–310 (1997). https://doi.org/10.1007/BF02450328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450328

Key words

Navigation