Skip to main content
Log in

Electrotonic properties of neostriatal neurons are modulated by extracellular potassium

  • Regular Papers
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In order to assess the effects of [KK]o on the passive membrane properties of neostriatal neurons, the cable properties of these cells were determined at two extracellular potassium concentrations (6.25 and 3.0 mM). The effect of tetraethylammonium (TEA) on cable properties was also studied at 6.25 [KK]o. At 6.25 mM [KK]o, the mean input resistance at the resting membrane potential (RMP), and the mean membrane time constant (τo) were 27±1.5 MΩ and 6.9±0.5 ms respectively (n=17), while at 3 mM [KK]o they were 62.9±4.8 MΩ and 14.3±0.6 ms (n=15) (mean ±SEM). With one of the methods used to calculate the electronic parameters, the total electrotonic length of the dendrites (L) and the dendritic to somatic conductance ratio (γ) were 1.3±0.05 and 5±0.8 at the higher [KK]o respectively, while they were 0.95±0.04 and 3±0.7 at the lower [KK]o. Cells were depolarized in 6.25 as compared to 3 mM [KK]o (RMP=-66±1.3 mV vs RMP=-80.5±1.4 mV). After one hour exposure to TEA (10 mM), the input resistance and time constant tripled at 6.25 mM [KK]o. TEA slightly depolarized the cells bathed in 6.25 mM [KK]o. The results suggest that changes in [KK]o, within the physiological range, markedly affect the cable properties of neostriatal neurons, possibly modifying subthreshold, voltage-dependent KK-conductances. TEA seems to block some of these channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargas J, Galarraga E, Aceves J (1985) Potassium effect on electrotonic constants of neostriatal neurons. Neurosci Abstr 365

  • Barrett JN, Crill WE (1974) Specific membrane properties of cat motoneurons. J Physiol (Lond) 239: 301–324

    Google Scholar 

  • Benson JA, Adams WB (1987) The control of rhythmic neuronal firing. In: Kaczmarek LK, Levitan IB (ed) Neuromodulation. Oxford University Press, Oxford, pp 100–118

    Google Scholar 

  • Brown TH, Perkel DH, Norris JC, Peacock JH (1981a) Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J Neurophysiol 45: 1–15

    Google Scholar 

  • Brown TH, Fricke RA, Perkel DH (1981b) Passive electrical constants in three classes of hippocampal neurons J Neurophysiol 46: 812–827

    Google Scholar 

  • Burke RE, ten Bruggencate G (1971) Electrotonic characteristics of alpha motoneurons of varying size. J Physiol (Lond) 212: 1–20

    Google Scholar 

  • Calabresi P, Misgeld U, Dodt HU (1987a) Intrinsic membrane properties of neostriatal neurons can account for their low levels of spontaneous activity. Neuroscience 20: 293–303

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G (1987b) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20: 757–771

    Article  CAS  PubMed  Google Scholar 

  • Carlen PL, Durand D (1981) Modelling the postsynaptic location and magnitude of tonic conductance changes resulting from neurotransmitters or drugs. Neuroscience 6: 839–846

    Google Scholar 

  • Cherubini E, Lanfumey L (1987) An inward calcium current underlying regenerative calcium spikes in rat striatal neurons in vitro enhanced by BAY K 8644. Neuroscience 24: 997–1005

    Google Scholar 

  • Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48: 1302–1320

    Google Scholar 

  • Crepel F, Penit-Soria J (1986) Inward rectification and low threshold calcium conductance in rat cerebellar Purkinje cells.An in vitro study. J Physiol (Lond) 372: 1–23

    Google Scholar 

  • Crill WE, Schwindt PC, Flatman JA, Stafstrom CE, Spain W (1986) Inward currents in cat neocortical neurons studied in vitro. In: Schwarcz R, Yehezel-Ari (eds) Excitatory aminoacids and epilepsy. Plenum, New York, pp 401–411

    Google Scholar 

  • DiFrancesco D (1985) The cardiac hyperpolarizing-activated current, if, origins and developments. Prog Biophys Molec Biol 46: 163–183

    Google Scholar 

  • Dodge FA (1979) The nonuniform excitability of central neurons as exemplified by a model of the spinal motoneuron. In: Schmitt FO, Worden FG (eds) The neurosciences study program. MIT Press, Cambridge MA, pp 439–455

    Google Scholar 

  • Durand D, Carlen PL, Gurevich N, Ho A, Kunov H (1983) Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining. J Neurophysiol 50: 1080–1097

    Google Scholar 

  • Galarraga E, Bargas J, Aceves J (1985) Slow sodium and IA currents in neostriatal neurons. Neurosci Abstr 202

  • Gorman ALF, Mirolli M (1972) The passive electrical properties of the membrane of a molluscan neuron. J Physiol (Lond) 227: 35–49

    Google Scholar 

  • Hagiwara S, Miyazaki S, Rosenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol 67: 621–638

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable cells. Sinauer AI Pub, Sunderland, Mass

    Google Scholar 

  • Iansek R, Redman SJ (1973) An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. J Physiol (Lond) 234: 613–636

    Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon Press, Oxford

    Google Scholar 

  • Jack JJB, Redman SJ, Wong K (1981) The components of synaptic potentials evoked in cat spinal motoneurons by impulses in single group Ia afferents. J Physiol (Lond) 321: 65–96

    Google Scholar 

  • Johnston D (1981) Passive cable properties of hippocampal CA3 pyramidal neurons. Cell Molec Neurobiol 1: 41–55

    Google Scholar 

  • Jones SW, Adams PR (1987) The M-current and other potassium currents of vertebrate neurons. In: Kaczmarek LK, Levitan IB (eds) Neuromodulation. Oxford University Press, Oxford, pp 159–186

    Google Scholar 

  • Kawato M (1984) Cable properties of a neuron model with nonuniform membrane resistivity. J Theor Biol 111: 149–169

    Google Scholar 

  • Kita T, Kita H, Kitai ST (1984) Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Res 300: 129–139

    Google Scholar 

  • Kitai ST, Kita H (1984) Electrophysiological study of the neostriatum in brain slice preparation. In: Dingledine R (ed) Brain slices. Plenum Press, New York, pp 285–296

    Google Scholar 

  • Lancaster B, Pennefather P (1987) Potassium currents evoked by brief depolarizations in bull-frog sympathetic ganglion cells. J Physiol (Lond) 387: 519–548

    Google Scholar 

  • Lux HC, Pollen DA (1966) Electrical constants of neurons in the motor cortex of the cat. J Neurophysiol 29: 207–220

    Google Scholar 

  • Mayer ML, Westbrook GL (1983) A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurons. J Physiol (Lond) 340: 19–45

    Google Scholar 

  • Misgeld U, Okada Y, Hassler R (1979) Locally evoked potentials in slices of rat neostriatum: a tool for the investigation of intrinsic excitatory processes. Exp Brain Res 34: 575–590

    Google Scholar 

  • Nelson PG, Lux HD (1970) Some electrical measurements of motoneuron parameters. Biophys J 10: 55–73

    Google Scholar 

  • Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol (Lond) 353: 1–50

    Google Scholar 

  • Noble D (1985) Ionic mechanisms in rhythmic firing of heart and nerve. TINS 8: 499–504

    Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30: 1138–1168

    Google Scholar 

  • Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys J 9: 1509–1541

    Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system. II. American Physiological Society, Bethesda MD, pp 39–97

    Google Scholar 

  • Redman S, Walmsley B (1983a) The time course of synaptic potentials evoked in cat spinal motoneurons at identified group Ia synapses. J Physiol (Lond) 343: 117–133

    Google Scholar 

  • Redman S, Walmsley B (1983b) Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurons at identified group Ia synapses. J Physiol (Lond) 343: 135–145

    Google Scholar 

  • Schwindt PC, Crill WE (1984) Membrane properties of cat spinal motoneurons. In: Davidoff RS (ed) Handbook of the spinal cord, Vols 2–3. Marcel Dekker Inc, New York, pp 199–242

    Google Scholar 

  • Spain WJ, Schwindt PC, Crill WE (1987) Anomalous rectification in neurons from cat sensorimotor cortex in vitro. J Neurophysiol 57: 1555–1576

    Google Scholar 

  • Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons. III. Firing level and time constant. J Neurophysiol 24: 260–271

    Google Scholar 

  • Stafstrom CE, Schwindt PC, Flatman JA, Crill WE (1984a) Properties of subthreshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 52: 244–263

    Google Scholar 

  • Stafstrom CE, Schwindt PC, Crill WE (1984b) Cable properties of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 52: 278–289

    Google Scholar 

  • Stanfield PR (1983) Tetraethylammonium ions and the potassium permeability of excitable cells. Rev Physiol Biochem Pharmacol 97: 1–67

    Google Scholar 

  • Strong JA, Kaczmarek LK (1987) Potassium currents that regulate action potentials and repetitive firing. In: Kaczmarek LK, Levitan IB (eds) Neuromodulation. Oxford University Press, Oxford, pp 119–137

    Google Scholar 

  • Sugimori M, Preston RJ, Kitai ST (1978) Response properties and electrical constants of caudate nucleus neurons in the cat. J Neurophysiol 41: 1662–1675

    Google Scholar 

  • Sykova E (1983) Extracellular potassium accumulation in the central nervous system. Prog Biophys Molec Biol 42: 135–189

    Google Scholar 

  • Traub RD, Llinás R (1979) Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol 42: 476–496

    Google Scholar 

  • Tsukahara N, Murakami F, Hultborn H (1975) Electrical constants of neurons in the red nucleus. Exp Brain Res 23: 49–64

    Google Scholar 

  • Turner DA, Schwartzkroin PA (1984) Passive electrotonic structure and dendritic properties of hippocampal neurons. In: Dingledine R (ed) Brain slices. Plenum Press, New York, pp 25–50

    Google Scholar 

  • Williams JT, North RA, Shefner SA, Nishi S, Egan T (1984) Membrane properties of rat locus coeruleus neurones. Neuroscience 13: 137–156

    Google Scholar 

  • Wilson CJ (1984) Passive cable properties of dendritic spines and spiny neurons. J Neurosci 4: 281–297

    Google Scholar 

  • Wilson CJ (1985) A computer model of the neostriatal spiny neuron based on high voltage electron microscopic measurements of cell shape. Neurosci Abstr 202

  • Wong RKS, Traub RD (1983) Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J Neurophysiol 49: 442–458

    Google Scholar 

  • Yarom Y, Llinás R (1987) Long-term modifiability of anomalous and delayed rectification in guinea pig inferior olivary neurons. J Neurosci 7: 1166–1177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargas, J., Galarraga, E. & Aceves, J. Electrotonic properties of neostriatal neurons are modulated by extracellular potassium. Exp Brain Res 72, 390–398 (1988). https://doi.org/10.1007/BF00250260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250260

Key words

Navigation