Skip to main content
Log in

Evaluation of local cerebral glucose utilization and the permeability of the blood-brain barrier in the genetically epilepsy-prone rat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The genetically epileptic-prone rat (GEPR) is a valuable model for the study of gene-linked abnormalities involved in epilepsy. In comparison with normal Sprague-Dawley controls, we found, in GEPRs, a marked depression in local cerebral glucose utilization, widespread throughout the brain. This depression was accompanied by a significant increase of blood-brain barrier permeability and a reduction in regional blood volume. Finally GEPRs showed lower plasma levels of total triiodothyronine than normal controls. One can speculate that alterations in cerebral metabolism and microvascular regulation and thyroid hormone imbalance may be gene-linked factors involved in seizure susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blasberg R, Fenstermacher J, Patlak C (1983) Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32

    PubMed  Google Scholar 

  • Burnstock G (1985) Neurogenic control of cerebral circulation. Cephalalgia 5:25–33

    Google Scholar 

  • Chapman AG, Croucher MG, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneimittel forschung 34:1261–1264

    PubMed  Google Scholar 

  • Chapman AG, Faingold CL, Hart GP, Bowker HM, Meldrum BS (1986) Brain regional amino acid levels in seizure susceptible rats: changes related to sound-induced seizures. Neurochem Int 8:273–279

    Article  Google Scholar 

  • Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38:2411–2416

    PubMed  Google Scholar 

  • Dailey JW, Jobe P (1986) Indices of noradrenergic function in the central nervous system of seizure-naive genetically epilepsyprone rats. Epilepsia 27:665–670

    PubMed  Google Scholar 

  • Dailey JW, Reigel CE, Mishra PK, Jobe PC (1989) Neurobiology of seizure predisposition in the genetically epilepsy-prone rat. Epilepsy Res 3:3–17

    PubMed  Google Scholar 

  • Dow-Edwards D, Crane AN, Rosloff B, Kennedy C, Sokoloff L (1986) Local cerebral glucose utilization in the adult cretinous rat. Brain Res 373:139–145

    Article  PubMed  Google Scholar 

  • Dratman MB, Crutchfield FL, Gordon JT, Jennings AS (1983) Iodothyronine homeostasis in rat brain during hypo- and hyperthyroidism. Am J Physiol 245:E185-E193

    PubMed  Google Scholar 

  • Eayrs JT (1954) The vascularity of the cerebral cortex in normal and cretinous rats. J Anat (Lond) 88:164–173

    PubMed  Google Scholar 

  • Ellison MD, Povlishock JT, Hayes RL (1985) Examination of the blood-brain barrier transfer of α-aminoisobutyric acid and horseradish peroxidase: regional alterations in blood-brain barrier function following acute hypertension. J Cereb Blood Flow Metab 6:471–480

    Google Scholar 

  • Faingold CL (1988) The genetically epilepsy-prone rat. Gen Pharmacol 19:331–338

    PubMed  Google Scholar 

  • Faingold CL, Gehlbach G, Caspary D (1986a) Decreased effectiveness of GABA-mediated inhibition in the inferior colliculus of the genetically epilepsy-prone rat. Exp Neurol 93:145–159

    PubMed  Google Scholar 

  • Faingold CL, Travis MA, Gehlbach G, Hoffmann WE, Jobe PC, Laird HE, Caspary DM (1986b) Neuronal response abnormalities in the inferior colliculus of the genetically-epilepsyprone rat. Electroencephalogr Clin Neurophysiol 63:296–305

    Article  PubMed  Google Scholar 

  • Fisher DA (1985) Thyroid hormone effects on growth and development. Pediatr Adolesc Endocrinol 14:75–89

    Google Scholar 

  • Ford DH, Cramer EB (1977) Developing nervous system in relation to thyroid hormones. In: Grave GD (ed) Thyroid hormones and brain development. Raven Press, New York, pp 1–18

    Google Scholar 

  • Franck JE, Ginter KL, Schwartzkroin PA (1989) Developing genetically epilepsy-prone rats have an abnormal seizure response to flurothyl. Epilepsia 30:1–6

    PubMed  Google Scholar 

  • Goldman H, Berman RF, Murphy S (1987) ACTH-related peptides, kindling and seizure disorders. Adv Biochem Psychopharmacol 43:317–327

    PubMed  Google Scholar 

  • Gross G, Schümann HJ (1981) Reduced number of α2-adrenoceptors in cortical brain membranes of hypothyroid rats. J Pharm Pharmacol 33:552–554

    PubMed  Google Scholar 

  • Gross PM, Teasdale GM, Graham DI, Angerson WJ, Harper AM (1982) Intra-arterial histamine increases blood-brain transport in rats. Am J Physiol 243:H307-H317

    PubMed  Google Scholar 

  • Hom AC, Buterbaugh GG (1986) Estrogen alters the acquisition of seizures kindled by repeated amygdala stimulation or pentylenetetrazol administration in ovariectomized female rats. Epilepsia 27:103–108

    PubMed  Google Scholar 

  • Jobe P, Picchioni A, Chin L (1973) Role of norepinephrine in audiogenic seizure in the rat. J Pharmacol Exp Ther 184:1–10

    PubMed  Google Scholar 

  • Klein B, Kuschinsky W, Schröck H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 20:H1333-H1340

    Google Scholar 

  • Kobayashi H, Magnoni MS, Govoni S, Izumi F, Wada A, Trabucchi M (1986) Neuronal control of brain microvessels function. Experientia 41:427–434

    Article  Google Scholar 

  • Laird HE, Dailey JW, Jobe PC (1984) Neurotransmitter abnormalities in genetically epileptic rodents. Fed Proc 43:2505–2509

    PubMed  Google Scholar 

  • Makino K, Tanaka T, Yonemasu Y (1988) Regional cerebral blood flow and kainic acid-induced focal limbic seizures in cats. Epilepsy Res 2:260–268

    Article  PubMed  Google Scholar 

  • McCulloch J (1982) Mapping functional alterations in the CNS with [14C]deoxyglucose. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 15. Plenum Press, New York, pp 321–409

    Google Scholar 

  • Meisami E, Valcana T, Timiras PS (1970) Effects of neonatal hypothyroidism on the development of brain excitability in the rat. Neuroendocrinology 6:160–167

    PubMed  Google Scholar 

  • Mills SA, Savage DD (1988) Evidence of hypothyroidism in the genetically epilepsy-prone rat. Epilepsy Res 2:102–110

    PubMed  Google Scholar 

  • Mills SA, Reigel CE, Jobe PC, Savage DD (1987) Deficits in serum growth hormone and postnatal growth in the genetically epilepsy-prone rat. Soc Neurosci Abstr 13:943

    Google Scholar 

  • Newmark ME, Penry JK (1980) Catamenial epilepsy: a review. Epilepsia 21:281–300

    PubMed  Google Scholar 

  • Ohno K, Pettigrew K, Rapoport S (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:299–307

    Google Scholar 

  • Palmer CG (1986) Neurochemical coupled actions of transmitters in the microvascolature of the brain. Neurosci Biobehav Rev 10:79–101

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Penny J, Brown R, Hodges KB, Kupetz SA, Glenn DW, Jobe PC (1983) Cochlear morphology of the audiogenic-seizure susceptible (AGS) or genetically epilepsy-prone rat (GEPR). Acta Otolaryngol 95:1–12

    PubMed  Google Scholar 

  • Picozzi P, Todd N, Crockard A (1987) Regional blood-brain barrier permeability changes after restoration of blood flow in postischemic gerbil brains: a quantitative study. J Cereb Blood Flow Metab 5:10–16

    Google Scholar 

  • Rami A, Patel AJ, Rabie A (1986) Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells. Neuroscience 19:1217–1226

    Article  PubMed  Google Scholar 

  • Reigel CE, Dailey JW, Jobe PC (1986) The genetically epilepsy-prone rat: an overview of seizure-prone characteristics and responsiveness to anticonvulsant drugs. Life Sci 39:763–774

    Article  Google Scholar 

  • Ruiz-Marcos A, Salas J, Sanchez-Toscano F, Escobar del Rey F, Morreale de Escobar G (1983) Effect of neonatal and adultonset hypothyroidism on pyramidal cells of the rat auditory cortex. Dev Brain Res 9:205–213

    Article  Google Scholar 

  • Saija A, Princi P, De Pasquale R, Costa G (1987) Regional blood-brain barrier permeability changes in response to ACTH plasma levels modifications. Bull Mol Biol Med 12:97–109

    Google Scholar 

  • Saija A, Princi P, De Pasquale R, Costa G (1988a) High intensity light exposure increases blood-brain barrier transport in rats. Pharmacol Res Commun 20:553–559

    PubMed  Google Scholar 

  • Saija A, Princi P, De Pasquale R, Costa G (1988b) Circadian modifications of blood-brain barrier (BBB) permeability in the rat. Pharmacol Res Commun 20:249–259

    Google Scholar 

  • Saija A, Princi P, De Pasquale R, Costa G (1989) Modifications of the permeability of the blood-brain barrier and local cerebral metabolism in pentobarbital- and ketamine-anaesthetized rats. Neuropharmacology 28:997–1002

    Article  PubMed  Google Scholar 

  • Saija A, Princi P, De Pasquale R, Costa G (1990a) Arecoline, but not haloperidol, induces changes in the permeability of the blood-brain barrier in the rat. J Pharm Pharmacol 42:135–138

    PubMed  Google Scholar 

  • Saija A, Princi P, D'Amico N, De Pasquale R, Costa G (1990b) Aging and sex influence the permeability of the blood-brain barrier in the rat. Life Sci 47:2261–2267, 1990

    Article  PubMed  Google Scholar 

  • Savage DD, Reigel CE, Jobe PC (1986) Angular bundle kindling is accelerated in rats with a genetic predisposition to acoustic stimulus-induced seizures. Brain Res 376:412–415

    Article  PubMed  Google Scholar 

  • Seyfried TN, Glaser GH, Yu RK (1979) Thyroid hormone influence on the susceptibility of mice to audiogenic seizures. Science 205:598–600

    PubMed  Google Scholar 

  • Sokoloff L (1980) The [14C]deoxyglucose method for the quantitative determination of local cerebral glucose utilization: theoretical and practical consideration. In: Passonneau JW, Hawkins RA, Lust WD, Welsh FA (eds) Cerebral metabolism and neural function. Williams and Wilkins, Baltimore, pp 319–330

    Google Scholar 

  • Sokoloff L (1983) Measurement of local glucose utilization and its use in localization of functional activity in the Central Nervous System of animals and man. Rec Prog Hormone Res 39:75–126

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    PubMed  Google Scholar 

  • Sutov AA, Pleskova NM, Prostakova TI (1983) Schilddrüsenfunktionsstörungen bei der Temporallappen-Epilepsie. Radiobiol Radiother 24:711–716

    Google Scholar 

  • Tacke U, Paananen A, Tuomisto J (1984) Seizure thresholds and their postictal changes in audiogenic seizure (AGS)-susceptible rats. Eur J Pharmacol 104:85–92

    Article  PubMed  Google Scholar 

  • Tyson G, Teasdale G, Graham D, McCulloch J (1982) Cerebrovascular permeability following MCA occlusion in the rat. J Neurosurg 57:186–196

    PubMed  Google Scholar 

  • Vaccari A, Biassoni R, Timiras PS (1983) Effects of neonatal dysthyroidism on serotonin type 1 and type 2 receptors in rat brain. Eur J Pharmacol 95:53–63

    Article  PubMed  Google Scholar 

  • Van Middlesworth L, Norris CH (1980) Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment. Endocrinology 106:1686–1690

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saija, A., Princi, P., De Pasquale, R. et al. Evaluation of local cerebral glucose utilization and the permeability of the blood-brain barrier in the genetically epilepsy-prone rat. Exp Brain Res 88, 151–157 (1992). https://doi.org/10.1007/BF02259136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259136

Key words

Navigation