Skip to main content
Log in

Unusual nutrition of the “Pompeii worm” Alvinella pompejana (polychaetous annelid) from a hydrothermal vent environment: SEM, TEM, 13C and 15N evidence

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Morphological and histological studies of Alvinella pompejana (a polychaete living in the vicinity of hydrothermal vents of the East Pacific Ocean) were performed using light, scanning and transmission electron microscopy. The worms were collected in April–May 1979, during the “Rise” cruise by the submersible “Alvin” on the crest of East Pacific Rise at 21°N. The digestive tracts contained many sulfide particles (as determined by microprobe analysis) associated with organic matter and bacteria. Bacterial communities of different morphological types (cocci and filaments) were also observed at different levels of the worm's outer teguments. An atypical (possibly bacteria-derived) nutritional source of carbon and nitrogen for A. pompejana is indicated by the natural abundances of 13C:12C and 15N:14N in its tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Baross, J. A., M. D. Lilley and L. J. Jordon: Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature, Lond. 298, 366–368 (1982)

    Google Scholar 

  • Cavanaugh, C. H., S. L. Gardiner, M. L. Jones, H. W. Jannash and J. B. Waterbury: Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213, 340–341 (1981)

    Google Scholar 

  • Corliss, J. B., J. A. Baross and S. E. Hoffmann: An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol. Acta SP, 59–69 (1981)

  • Desbruyères, D., P. Crassous, J. P. Grassle, A. Khripounoff, D. Reyss, M. Rio et M. Van Praet: Données écologiques sur un nouveau site d'hydrothermalisme actif de la ride du Pacifique oriental. C. r. hebd. Séanc. Acad. Sci., Paris 295, 489–494 (1982)

    Google Scholar 

  • Desbruyères, D. et L. Laubier: Alvinella pompejana gen., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique. Oceanol. Acta 3, 267–274 (1980)

    Google Scholar 

  • Enright, J. J., W. A. Newman, R. R. Hessler and J. A. McGowan: Deep-ocean hydrothermal vent communities. Nature, Lond. 289, 219–221 (1981)

    Google Scholar 

  • Felbeck, H.: Chemoautotrophic potential of the hydrothermal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213, 336–338 (1981)

    Google Scholar 

  • Jannash, H. W. and C. O. Wirsen: Chemosynthetic primary production at East Pacific sea-floor spreading center. BioSci. 29, 529–598 (1979)

    Google Scholar 

  • Jones, M. L.: Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift, Science, N.Y. 213, 333–336 (1981)

    Google Scholar 

  • Laubier, L., D. Desbruyères and C. Chassard-Bouchaud: Evidence of sulfur accumulation in the epidermis of the polychaete Alvinella pompejana from deep-sea hydrothermal vents: a microanalytical study. Mar. Biol. Lett. 4, 113–116 (1983)

    Google Scholar 

  • Londsale, P.: Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res. 24, 857–863 (1977)

    Google Scholar 

  • Rau, G. H.: Hydrothermal vent clam and tube worm 13C/12C: further evidence of non photosynthetic food sources. Science, N.Y. 213, 338–340 (1981a)

    Google Scholar 

  • Rau, G. H.: Low 15N/14N in hydrothermal vent animals: ecological implications. Nature, Lond. 289, (5797), 484–485 (1981b)

    Google Scholar 

  • Rau, G. H. and J. I. Hedges: Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, N.Y. 203, 648–649 (1979)

    Google Scholar 

  • Rhoads, D. C., R. A. Lutz, E. P. Revalas and R. M. Cerrato: Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science, N.Y. 214, 911–933 (1981)

    Google Scholar 

  • Stump, R. L. and J. W. Frazer: Simultaneous determination of carbon, hydrogen and nitrogen in organic compounds. Nucl. Sci. Abstr. 28, p. 746 (1973)

    Google Scholar 

  • Turekian, K. K. and J. K. Cochran: Growth rate of a vesicomyd clam from the Galapagos spreading center. Science, N.Y. 214, 909–911 (1981)

    Google Scholar 

  • Turekian, K. K., J. K. Cochran and Y. Nazaki: Growth rate of a clam from the Galapagos Rise hot spring field using natural radionuclide ratios. Nature, Lond. 280, 385–387 (1979)

    Google Scholar 

  • Williams, P. M., K. L. Smith, E. M. Druffel and T. W. Linick: Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity. Nature, Lond. 292, 448–449 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Contribution No. 807 from Centre Océanologique de Bretagne, B.P. 337, F-29273 Brest Cédex, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbruyères, D., Gaill, F., Laubier, L. et al. Unusual nutrition of the “Pompeii worm” Alvinella pompejana (polychaetous annelid) from a hydrothermal vent environment: SEM, TEM, 13C and 15N evidence. Mar. Biol. 75, 201–205 (1983). https://doi.org/10.1007/BF00406003

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406003

Keywords

Navigation