Skip to main content
Log in

Pharmacokinetics of a single oral dose of hydroflumethiazide in health and in cardiac failure

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

The pharmacokinetics of hydroflumethiazide (HFT) were investigated after single oral doses of 6 µmoles/ per kg body weight in five healthy subjects and in nine patients with moderate cardiac failure. HFT was excreted in urine together with 2,4-disulfamyl-5-trifluoromethylaniline (DTA), which was also present in the blood after administration of HFT. HFT and DTA were determined by TLC and spectrofluorodensitometry. Mean cumulative urinary excretion of HFT was 46.5 and 47.5 per cent of the dose both in healthy subjects and in patients. Distribution half-life (t1/2α) was about 2 h in both groups of subjects, while biological half-life (t1/2β) ranged from 12.4 to 26.9 h (mean 16.6) in healthy subjects, and from 6.3 to 13.7 h (mean 9.6) in patients. Mean renal clearance was 0.33 and 0.211 · h−1 · kg−1 in normal subjects and patients, respectively, and was almost equal to the total body clearance. HFT had a large apparent volume of distribution (Vβ), with mean values of 6.4 and 3.11 · kg−1 in normal subjects and patients. Mean cumulative urinary excretion of DTA was 1.8 and 1.9 per cent in healthy subjects and patients with cardiac failure. The apparent half-life of DTA, determined from urinary excretion rate in eleven subjects, ranged from 16 to 56 h but half-lives in three others were more than 100 h. The results indicate that HFT is partly metabolized in the body to DTA, and DTA and HFT are excreted in urine. The half-life of DTA was longer than that of the parent drug. The apparent volume of distribution, clearance and biological half-life of HFT were lower in patients with cardiac failure than in healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beevers, D. G., Harpur, J. E., Hamilton, M.: The long-term treatment of hypertension with thiazide diuretics. Postgrad. Med. J.47, 639–643 (1971)

    Google Scholar 

  2. Kochar, M. S., Itskovitz, H. D.: Effects of hydrochlorothiazide in hypertensive patients and the need for potassium supplementation. Curr. Ther. Res.15, 298–304 (1973)

    Google Scholar 

  3. Reutter, F., Schaub, F.: Harnsäurestoffwechsel und Salidiuretica. Dtsch. Med. Wochenschr.89, 1101–1104 (1964)

    Google Scholar 

  4. Degnbol, B., Dorph, S., Marner, T.: The effect of different diuretics on elevated blood pressure and serum potassium. Acta Med. Scand.193, 407–410 (1973)

    Google Scholar 

  5. Bengtsson, C., Sannerstedt, R., Werkö, L.: Saluretika i dagens hypertensjonsbehandling. Läkartidningen71, 2997–3001 (1974)

    Google Scholar 

  6. Kutt, H.: Pharmacodynamic and pharmacokinetic measurements of antiepileptic drugs. Clin. Pharmacol. Ther.16, 243–250 (1974)

    Google Scholar 

  7. Chrzanovski, F. A., Niebergall, P. J., Mayock, R. L., Taubin, J. M., Sugita, E. T.: Kinetics of intravenous theophylline. Clin. Pharmacol. Ther.22, 188–195 (1977)

    Google Scholar 

  8. Johnsson, G., Regårdh, C.-G.: Clinical pharmacokinetics of β-adrenoreceptor blocking drugs. Clin. Pharmacokinetics1, 233–263 (1976)

    Google Scholar 

  9. Brørs, O., Jacobsen, S., Arnesen, E.: Fluorometric determination of hydroflumethiazide in human plasma and urine after its oral administration. Europ. J. Clin. Pharmacol.11, 149–154 (1977)

    Google Scholar 

  10. Blagg, C. R.: Hydroflumethiazide. A new oral diuretic. Lancet1959/II, 311–313

    Google Scholar 

  11. Garceau, Y., Davies, I., Hasegawa, J.: Quantitative fluorometric TLC procedure for determination of hydroflumethiazide in biological fluids. J. Pharm. Sci.63, 1793–1795 (1974)

    Google Scholar 

  12. Gibaldi, M., Perrier, D.: Pharmacokinetics pp. 80–86. New York: Mlarcel Dekker 1975

    Google Scholar 

  13. Mollica, J. A., Rehm, C. R., Smith, J. B., Govan, H. K.: Hydrolysis of benzothiadiazines. J. Pharm. Sci.60, 1380–1384 (1971)

    Google Scholar 

  14. Baer, J. E., Leidy, H. L., Brooks, A. V., Beyer, K. H.: The physiological disposition of chlorothiazide (Diuril) in the dog. J. Pharmacol. Exp. Ther.125, 295–302 (1959)

    Google Scholar 

  15. Beisenherz, G., Kloss, F. W., Klatt, L., Binder, B.: Distribution of radioactivity in the tissues and excretory products of rats and rabbits following administration of14C-Hygroton. Arch. Int. Pharmacodyn. Ther.161, 76–93 (1966)

    Google Scholar 

  16. Calesnick. B., Sheppard, H., Bowen, N.: Direct comparison of C14-chlorothiazide and T3-hydrochlorothiazide in man. Fed. Proc.20, 409 (1961)

    Google Scholar 

  17. Yakatan, G. J., Smith, R. B., Frome, E. L., Doluisio, J. T.: Pharmacokinetics of orally administered hydroflumethiazide in man. J. Clin. Pharmacol.17, 37–47 (1977)

    Google Scholar 

  18. Wallace, S. M., Shah, V. P., Riegelman, S.: GLC analysis of acetazolamide in blood, plasma, and saliva following oral administration to normal subjects. J. Pharm. Sci.66, 527–530 (1977)

    Google Scholar 

  19. Beermann, B., Groschinsky-Grind, M., Rosén, A.: Absorption, metabolism, and excretion of hydrochlorothiazide. Clin. Pharmacol. Ther.19, 531–537 (1976)

    Google Scholar 

  20. Beermann, B., Hellström, K., Lindström, B., Rosén, A.: Binding-site interaction of chlorthalidone and acetazolamide, two drugs transported by red blood cells. Clin. Pharmacol. Ther.17, 424–432 (1975)

    Google Scholar 

  21. Wallace, S. M., Riegelman, S.: Uptake of acetazolamide by human erythrocytes in vitro. J. Pharm. Sci.66, 729–731 (1977)

    Google Scholar 

  22. Thomson, P. D., Melmon, K. L., Richardson, J. A., Cohn, K., Steinbrum, W., Cudihee, R., Rowland, M.: Lidocain pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann. Intern. Med.78, 499–508 (1973)

    Google Scholar 

  23. Klotz, U.: Pathophysiological and disease-induced changes in drug distribution volume: Pharmacokinetic implications. Clin. Pharmacokinetics1, 204–218 (1976)

    Google Scholar 

  24. Crouthamel, W. G.: The effect of congestive heart failure on quinidine pharmacokinetics. Am. Heart J.90, 335–339 (1975)

    Google Scholar 

  25. Craver, B. N., Kulesza, J. S., Piala, J. J., Poutsiaka, J. W., Smith, C. I.: Comparative animal pharmacology of the benzothiadiazine diuretics. Monogr. Ther.5, 80–87 (1960)

    Google Scholar 

  26. Ågren, A., Bäck, R.: Complex formation between macromolecules and drugs. VII. Binding of saccharine, N-methyl saccharine, and the diuretic drugs hydroflumethiazide and bendroflumenthiazide to human serum albumin. Acta Pharm. Suec.10, 223–228 (1973)

    Google Scholar 

  27. Wilkinson, G. R., Shand, D. G.: A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther.18, 377–390 (1975)

    Google Scholar 

  28. Wollheim, E.: Kreislauffunktion und Oedem. In: Diureseforschung. Heilmeyer, L., Mazzei, E. S., Holtmeier, H. J., Marongiu, F. (eds.) p. 85–98. Stuttgart: Thieme 1967

    Google Scholar 

  29. Lund, F. J., Kobinger, W.: Aromatic sulphamyl compounds with diuretic action. Acta Pharmacol. Toxicol. (Kbh.)16, 297–324 (1960)

    Google Scholar 

  30. Lund, A., Störling, K.: Pharmacological properties of a new diuretic: 5-chloro-2,4-bis-sulphonamidoaniline. Acta Pharmacol. Toxicol (Kbh.)15, 300–306 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brørs, O., Jacobsen, S. & Arnesen, E. Pharmacokinetics of a single oral dose of hydroflumethiazide in health and in cardiac failure. Eur J Clin Pharmacol 14, 29–37 (1978). https://doi.org/10.1007/BF00560255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00560255

Key words

Navigation