Skip to main content
Log in

Magnesium pyridoxal 5-phosphate glutamate reduces hyperlipidaemia in patients with chronic renal insufficiency

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Chronic renal insufficiency is often accompanied by hyperlipidaemia and subsequent coronary heart disease.

Two groups of 15 patients with serum creatinine >2 mg/100 ml and serum cholesterol >250 mg/100 ml were given 3×50 mg magnesium pyridoxal 5-phosphate glutamate (MPPG) or placebo for 12 weeks in a double-blind, randomised study.

Total cholesterol in the MPPG group (282.4 mg·100 ml−1) was lower than in the placebo group (354.3 mg·100 ml−1) after 12 weeks of treatment. Triglycerides in the MPPG group were 265.1 mg·100 ml−1 compared to 361.9 mg·100 ml−1. After 12 weeks on MPPG the LDL/HDL ratio of 3.56 was lower than in the placebo group — 6.83. Side effects in the MPPG group were similar to those in the placebo group. Thus, MPPG was an effective antihyperlipidaemic agent in patients with renal insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagdade JD, Albers JJ (1977) Plasma high-density lipoprotein concentrations in chronic-hemodialysis and renal-transplant patients. N Engl J Med 296: 1436–1439

    Google Scholar 

  2. Bagdade JD, Porte D, Bierman EL (1968) Hypertriglyceridemia — a metabolic consequence of chronic renal failure. N Engl J Med 279: 181–185

    Google Scholar 

  3. Boberg J, Boberg M, Gross R, Grundy S, Augustin J, Brown V (1977) The effect of treatment with clofibrate on hepatic triglyceride and lipoprotein lipase activities of post heparin plasma in male patients with hyperlipoproteinemia. Atherosclerosis 27: 499–503

    Google Scholar 

  4. Bolzano K, Krempler F, Sandhofer F (1978) Hepatic and extrahepatic triglyceride lipase activity in uraemic patients on chronic haemodialysis. Eur J Clin Invest 8: 289–293

    Google Scholar 

  5. Breier Ch, Lisch H-J, Drexel H, Braunsteiner H (1983) Lipoproteine, Apolipoproteine, hepatische Triglyceridlipase und Lecithin-Cholesterin-Acyl-Transferase bei Patienten mit nephrotischem Syndrom. Schweiz Med Wochenschr 113: 909–913

    Google Scholar 

  6. Brusis OA, Schmidt A, Upmeyer HJ (1985) Wirksamkeit und Verträglichkeit von Sedalipid bei der Behandlung verschiedener Hyperlipoproteinämien. Fortschr Med 43: 1011–1014

    Google Scholar 

  7. Carlson LA, Böttiger LE (1972) Ischemic heart disease in relation to fasting values of plasma triglycerides and cholesterol. Lancet 1: 865

    Google Scholar 

  8. Castelli WP, Doyle JT, Gordon T et al (1975) HDL cholesterol levels (HDLC) in coronary heart disease (CHD): a cooperative lipoprotein phenotyping study. Circulation 51 [Suppl 2]: 97

    Google Scholar 

  9. Cohen M (1985) Antihyperlipidemic properties ofβ-pyridylcarbinol — a review of preclinical studies. Life Sci 37: 1949–1961

    Google Scholar 

  10. Cremer P, Seidel D, Wieland H (1985) Quantitative Lipoproteinelektrophorese: Ihre routinemä\ige Anwendung im Vergleich mit anderen Verfahren zur differenzierten Untersuchung des Fettstoffwechsels. Lab Med 9: 39–51

    Google Scholar 

  11. Engel P, Eurich RE (1979) Die Behandlung primärer Hyperlipoproteinämien der IIa, IIb and IV mit Sedalipid. Therapiewoche 29: 5578–5784

    Google Scholar 

  12. Franceschini G, Sirtori M, Gianfranceschi G, Frosi T, Montanari G, Sirtori CR (1985) Reversible increase of the Apo CII/Apo CIII-1 ratio in the very low density lipoproteins after procetofen treatment in hypertriglyceridemic patients. Artery 12: 363–381

    Google Scholar 

  13. Frederickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins — an integrated approach to mechanisms and disorders. N Engl J Med 276: 34–44, 94–103, 215–225, 273–281

    Google Scholar 

  14. Gensini GF, Prisco D, Rogasi PG, Matucci M, Serneri GG (1985) Changes in fatty acid composition of the single platelet phospholipids induced by pantethine treatment. Int J Clin Pharm Res 5: 309–318

    Google Scholar 

  15. Gentili P, Manzardo S, Riva M (1985) Pharmacological study of a new hypolipidemic drug of prolonged activity, the tetraester of pantethine with 3-(3-pyridinemethoxycarbonyl)proprionic acid. Arzneimittelforsch/Drug Res 35: 1772–1777

    Google Scholar 

  16. Gofman JW, Young W, Tandy R (1966) Ischemic heart disease, atherosclerosis and longevity. Circulation 34: 679

    Google Scholar 

  17. Goldberg AP, Applebaum-Bowden DM, Bierman EL, Hazzard WR, Haas LB, Sherrard DJ, Brunzell JD, Huttunen JK, Ehnholm C, Nikkila EA (1979) Increase in lipoprotein lipase during clofibrate treatment of hypertriglyceridemia in patients on hemodialysis. N Engl J Med 301: 1073–1076

    Google Scholar 

  18. Grützmacher P, Scheuerman E-H, Siede W, Lang PD, Abshagen, Radke HW, Baldamus CA, Schoeppe W (1986) Lipid lowering treatment with bezafibrate in patients on chronic haemodialysis: Pharmacokinetics and effects. Klin Wochenschr 64: 910–916

    Google Scholar 

  19. Hörl WH, Hörl M, Heidland AA (1982) Fettstoffwechselstörungen bei Nieren-Krankheiten — Pathogenetische Mechanismen. Klin Wochenschr 60: 327–336

    Google Scholar 

  20. Hutt V, Wechsler JG, Klör HU, Ditschuneit H (1983) Zur Wirkung vonβ-pyridyl-carbinol auf Lipide und Lipoproteine bei primärer Typ IIa-Hyperlipoproteinämie. Arzneimittelforsch/Drug Res 33: 1682–1684

    Google Scholar 

  21. Ibels LS, Stewart JH, Mahony JF, Neall FC, Sheil AGR (1977) Occlusive arterial desease in uraemic and haemodialysis patients and renal transplant recipients. Q J Med 182: 197–214

    Google Scholar 

  22. Kannel WB, Castelli WP, Gordon T et al (1971) Serum cholesterol, lipoproteins, and risk of coronary heart disease. The Framingham Study. Ann Intern Med 24: 1

    Google Scholar 

  23. Kashyap ML, Srivastava LS, Hynd BA, Brady D, Perisutti G, Glueck CJ, Gartside PS (1980) Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis 35: 29

    Google Scholar 

  24. Lacour B, Roullet J-B, Kreis H, Thevenin M, Drüeke T (1985) Comparison of several atherogenicity indices by the analysis of serum lipoprotein composition in patients with chronic real failure with or without haemodialysis, and in renal transplant patients. J Clin Chem Clin Biochem 23: 805–810

    Google Scholar 

  25. Lowrie EG, Lazarus JM, Mocelin AJ, Bailey GL, Hampers CL, Wilson RE, Merrill JP (1978) Survival of patients undergoing chronic hemodialysis and renal transplantation. N Engl J Med 288: 863–867

    Google Scholar 

  26. Maggi GC, Donati C, Criscuoli G (1982) Pantethine, a physiological lipomodulating agent, in the treatment of hyperlipidemias. Curr Ther Res 32: 380

    Google Scholar 

  27. Miller GJ, Miller NE (1975) Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1: 16–19

    Google Scholar 

  28. Mordasini R, Frey F, Flury W, Klose G, Greten H (1977) Selective deficiency of hepatic triglyceride lipase in uremic patients. N Engl J Med 297: 1362–1366

    Google Scholar 

  29. Nagakawa Y, Orimo H, Harasawa M (1985) The anti-platelet effect of niceritrol in patients with arteriosclerosis and the relationship of the lipid-lowering effect to the anti-platelet effect. Thrombosis Res 40: 543–553

    Google Scholar 

  30. Nikkilä EA, Huttunen JK, Ehnholm CE (1977) Effect of clofibrate on postheparin plasma triglyceride lipase activites in patients with hypertriglyceridemia. Metabolism 26: 179–185

    Google Scholar 

  31. Panagiotopoulos T, Ketelson UP, Schmidt A, Heuck CC (1986) Long-term effect of magnesium pyridoxal 5-phosphate glutamate in rabbits developing hypercholesterolemia. Arzneimittelforsch/Drug Res 36: 1210–1215

    Google Scholar 

  32. Rapoport J, Aviram M, Chaimovitz C, Brook JG (1978) Defective high-density lipoprotein composition in patients on chronic hemodialysis. N Engl J Med 299: 1326–1329

    Google Scholar 

  33. Riesen WF, Mordasini R (1984) Hyperlipidemia in renal failure: Phenotypes and pathogenetic mechanisms. Contr Nephrol 41: 312–320

    Google Scholar 

  34. Shafrir E, Biale Y (1971) Lipoprotein lipase activity in some rat tissues as influenced by various metabolic situations and by nicotinic acid. In: Gey KF, Carlson LA (eds). Metabolic effects of nicotinic acid and its derivatives. Huber, Bern, pp 515–523

    Google Scholar 

  35. Scheffler W, Schwartzkopff W (1980) Frequently used lipid-lowering drugs having no guaranteed effect. Artery 8: 120–127

    Google Scholar 

  36. Schlierf G, Oster P (1978) Diagnostik und Therapie der Fettstoffwechselstörungen. Thieme, Stuttgart

    Google Scholar 

  37. Shinomiya M, Matsuoka N, Shirai K, Morisaki N, Sasaki N, Murano S, Saito Y, Kumogai A (1980) Effect of pantethine on cholesterol ester metabolism in rat arterial wall. Atherosclerosis 36: 75–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsten, R., Heintz, B., Nelson, K. et al. Magnesium pyridoxal 5-phosphate glutamate reduces hyperlipidaemia in patients with chronic renal insufficiency. Eur J Clin Pharmacol 34, 133–137 (1988). https://doi.org/10.1007/BF00614549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614549

Key words

Navigation