Skip to main content
Log in

The effect of support position and turbulence intensity on the flow near the surface of a sphere

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The flow near the surface of a sphere was studied, using a flow visualization technique, for Reynolds numbers from about 4×104 to 2.5×105. It was concluded that the presence of a crossflow support substantially disturbed the flow near the surface of the sphere, especially at supercritical Reynolds numbers. Photographs of the flow patterns around spheres with crossflow supports, and with rear supports, have been presented. Also, measurements were made which show the way in which the turbulence intensity of the free stream influenced the angle of separation at various Reynolds numbers.

Zusammenfassung

Die Strömung nahe der Oberfläche einer Kugel wurde untersucht, indem die Stromlinien sichtbar gemacht wurden. Die Untersuchungen wurden durchgeführt für Reynoldszahlen von etwa 4×104 bis 2,5×105. Die Ergebnisse zeigten, daß die Anwesenheit einer Halterung quer zur Strömung diese in der Nähe der Kugeloberfläche wesentlich störte, besonders bei überkritischen Reynoldszahlen. Photographien des Strömungsverlaufes um die Kugel sowohl mit einer Halterung quer zur Stromrichtung als auch mit einer anderen hinter der Kugel werden gezeigt. Außerdem wurden Messungen durchgeführt, die zeigen, in welcher Weise die Intensität der Turbulenz der freien Strömung den Ablösungswinkel bei verschiedenen Reynoldszahlen beeinflußt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C D :

drag coefficient (total drag/dynamic head × projected area)

C Dc :

critical drag coefficient. IfC D<D Dc, the flow pattern is considered subcritical.

h :

distance (s. Fig. 1)

Nu :

Nusselt number

R :

radius of the sphere

Re :

Reynolds number

Re c :

Reynolds number at whichC D=C Dc

Tu :

turbulence intensity component in the direction of the freestream flow

θ s :

average angle from the stagnation point to the separation circle measured in the horizontal plane

θ sc :

critical separation angle. If θssc, the flow pattern is considered subcritical. In this investigation θsc ≡ 92°

References

  1. Prandtl, L.: Göttingen Nachrichten Math. Phys., 177 (1914).

  2. Wieselsberger, C.: Z. für Flugtechnik und Motorluftschiffahrt, Bd. 5 (1914) S. 140/145.

    Google Scholar 

  3. Flachsbart, O.: NACA Tech. Memo. 475, August (1928). Translated from Physikalische Z., Bd. 28 (1927) S. 461/469.

  4. Höerner, S.: Luftfahrtforschung, Bd. XII (1935), Nr. 1.

  5. Pannell, J. R.: A.R.C. Reports and Memoranda No. 190 (1916) pp. 19/29.

  6. Fage, A., andD. H. Williams: A.R.C. Reports and Memoranda No. 1832 (1938) pp. 127/134.

  7. Fage, A.: A.R.C. Reports and Memoranda No. 1370 (1930).

  8. Fage, A.: A.R.C. Reports and Memoranda No. 1766 (1936).

  9. Bacon, D. L., andE. C. Reid: NACA Tech. Rept. 185 (1924).

  10. Millikan, C. B., andA. L. Klein: Aircraft Engineering, Vol. 5 (1933) pp. 169/174.

    Google Scholar 

  11. Dryden, H. L., andA. M. Kuethe: NACA Tech. Rept. 342 (1929).

  12. Dryden, H. L., G. B. Schubauer, W. C. Mock andH. K. Skramstad: NACA Tech. Rept. 581 (1937).

  13. Möller, W.: Physikalische Z., Bd. XXXIX (1938) S. 57/80.

    Google Scholar 

  14. Lautman, L. G., andW. C. Droege: A.I.R.L. A 6118, 50-15-3 (1950).

  15. Cary, J. R.: A.S.M.E. Trans. 75 (1953) pp. 483/487.

    Google Scholar 

  16. Xenakis, G., A. E. Amerman, andR. W. Michelson: W.A.D.C. Tech. Rept. 53–118 (1953).

  17. Wadsworth, J.: N.R.C. Rep. No. MT-39, Division of Mechanical Engineering (1958).

  18. Sato, K., andB. Sage: A.S.M.E. Trans. 80 (1958) pp. 1380/1388.

    Google Scholar 

  19. Short, W. W., R. A. S. Brown andB. H. Sage: J. Appl. Mech. (1960) pp. 393/400.

  20. Tomotika, S.: A.R.C. Reports and Memoranda 1766 (1936).

  21. Schlichting, H.: Boundary Layer Theory, McGraw-Hill Book Co., New York (1960).

    Google Scholar 

  22. Eichhorn, R.:M. S. Thesis, University of Minnesota (1955).

  23. Gough, M., andE. Johnson: NACA Tech. Note 425.

  24. Pankurst, R. C., andD. W. Holder: Wind Tunnel Technique, Sir Isaac Pitman and Sons, Ltd., London (1952).

    Google Scholar 

  25. Fage, A., andV. M. Falkner: A.R.C. Reports and Memoranda 1369 (1931).

  26. Maekawa, T., andS. Atsumi: NACA Tech. Memo. 1352.

  27. Sherman, F. S.: J. Aeronaut. Sci., Vol. 18, No. 8 (1951) p. 566.

    Google Scholar 

  28. Houck, P.: Research Note No. 14, The Aerophysics Dept. of Mississippi State University (1961).

  29. Eichhorn, R., andT. L. Eddy: J. Appl. Mech., Vol. 29 (1962) pp. 177/180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raithby, G.D., Eckert, E.R.G. The effect of support position and turbulence intensity on the flow near the surface of a sphere. Wärme- und Stoffübertragung 1, 87–94 (1968). https://doi.org/10.1007/BF00750790

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00750790

Keywords

Navigation