Skip to main content
Log in

Direct-contact heat transfer to a spherical liquid/vapor two-phase bubble trailing a wake

Wärmeübergang durch Direktkontakt im Nachlauf einer kugelförmigen Zweiphasenblase

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The paper deals with the heat transfer causing evaporation of liquid drops in a medium of an immiscible, less volatile liquid. Each drop turns into a two-phase bubble, consisting of a growing vapor phase and a reducing liquid phase, which continues to buoy up in the medium. The bubble is modeled as a sphere in which the yet-to-be vaporized liquid spreads over the rear surface while the rest is occupied by the heat-insulating vapor phase. The rear surface to serve as the effective heat transfer area is assumed to be covered with an axisymmetric wake instead of a boundary layer flow. The quasi-steady, overall heat transfer through the wake in the medium and the layer of the yet-to-be vaporized liquid in the bubble is predicted and compared with relevant experimental results.

Zusammenfassung

Die Untersuchung befaßt sich mit der durch die Verdampfung von Flüssigkeitstropfen in einem aus unvermischbarer, flüchtiger Flüssigkeit bestehendem, Medium verursachten Wärmeübertragung. Aus jedem Tropfen entsteht eine Zweiphasenblase, bestehend aus einer wachsenden Dampfphase und einer abnehmenden Flüssigkeitsphase, die in das Medium aufsteigt. Die Blase wird anhand eines Kugelmodells betrachtet, an dem sich die noch nicht verdampfte Flüssigkeit über die Rückseite verteilt und die restliche Fläche mit der wärmeisolierenden Dampfphase behaftet ist. Es wird angenommen, daß sich an der Rückseite als wirksamer Wärmeübergangsbereich ein achsensymmetrischer Nachlauf bildet. Es werden die quasi-gleichförmige Wärmeübertragung durch den Nachlauf in das Medium und durch die Schicht Lage der nicht verdampften Flüssigkeit in der Blase mathematisch berechnet und mit relevanten Versuchsergebnissen verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

diameter of sphere volume-equivalent to bubble

E :

width-to-height aspect ratio of bubble

Eo :

Eötvös number defined in Eq. (1)

g :

acceleration due to gravity

K θ,φ :

local, overall heat transfer coefficient for non-axisymmetricδ distribution

\(\bar K_\theta\) :

azimuthal average ofK θ,φ

m :

exponent of (− cosθ) in Eq. (17)

n :

exponent of sin(φ/2) in Eq. (22)

Nu :

Nusselt number,αD/λ c

Nu r :

Nusselt number related to heat transfer coefficient averaged over the rear half of a sphere

Nu θ :

local Nusselt number,α θ D/λ c

p :

static pressure in the continuous phase

Pe :

Péclet number,UD/xc

Pr :

Prandtl number,v c/xc

R :

radius of sphere volume-equivalent to bubble

Re :

Reynolds number,UD/ν c

U :

rise velocity of bubble

V :

volume of bubble

V l :

volume of liquid phase in bubble

V v :

volume of vapor phase in bubble

α :

continuous-phase-side heat transfer coefficient based on the surface area of a volume-equivalent sphere

α ov :

overall heat transfer coefficient based on the surface area of a volume-equivalent sphere

α ov :

local, continuous-phase-side heat transfer coefficient

β :

polar angle of three-phase contact line

δ :

local thickness of yet-to-be vaporized liquid on bubble surface

δ b :

δ at the bottom of bubble

δ cr :

critical value of\(\bar \delta \) for the onset of retreating of yet-to-be vaporized liquid on bubble surface

δ θ, max :

the maximum of δ on each parallel of latitude

\(\bar \delta ,\bar \delta _l \) :

average thicknesses of yet-to-be vaporized liquid defined by Eqs. (18) and (27), respectively

\(\bar \delta _\theta\) :

azimuthal average ofδ

Θ :

reduced polar angle defined by Eq. (30)

θ :

polar angle

θ w :

θ at flow-separation line

x:

thermal diffusivity

λ :

thermal conductivity

ν :

kinematic viscosity

ζ :

mass fraction of vapor in bubble

ϱ :

mass density

σ :

‘vapor/continuous-phase liquid’ interfacial tension

φ :

azimuthal angle

ψ :

constant indicating the ratio of (\(\bar \delta _l - \bar \delta \)) to (\(\bar \delta _{cr} - \bar \delta \))

c :

continuous-phase liquid

dl :

dispersed-phase substance in the state of saturated liquid

:

dispersed-phase substance in the state of saturated vapor

0:

initial condition before the onset of evaporation

References

  1. Sideman, S.; Taitel, Y.: Direct-contact heat transfer with change of phase: evaporation of drops in an immiscible liquid medium. Int. J. Heat Mass Transfer 7 (1964) 1273–1289

    Google Scholar 

  2. Simpson, H. C.; Beggs, G. C.; Nazir, M.: Evaporation of a droplet of one liquid rising through a second immiscible liquid: a new theory of the heat transfer process. Proc. 5th Intl. Heat Transfer Conf., Vol. 5 (1974) 59–63

    Google Scholar 

  3. Tochitani, Y.; Nakagawa, T.; Mori, Y. H.; Komotori, K.: Vaporization of single liquid drops in an immiscible liquid. Part II: Heat transfer characteristics. Wärme-Stoffübertrag. 10 (1977) 71–79

    Google Scholar 

  4. Raina, G. K.; Grover, P. D.: Direct contact heat transfer with change of phase: theoretical model. AIChE J. 28 (1982) 515–517

    Google Scholar 

  5. Raina, G. K.; Grover, P. D.: Direct contact heat transfer with change of phase: theoretical model incorporating sloshing effects. AIChE J. 31 (1985) 507–510

    Google Scholar 

  6. Battya, P.; Raghavan, V. R.; Seetharamu, K. N.: A theoretical analysis of direct contact evaporation of a moving drop in an immiscible liquid. In: Numerical Methods in Thermal Problems (eds. Lewis, R. N.; Johnson, J. A.; Smith, W. R.), pp. 1083–1093. Swansea (U.K.): Pineridge Press 1983

    Google Scholar 

  7. Battya, P.; Raghavan, V. R.; Seetharamu, K. N.: A theoretical correlation for the Nusselt number in direct contact evaporation of a moving drop in an immiscible liquid. Wärme-Stoffübertrag. 19 (1985) 61–66

    Google Scholar 

  8. Shimizu, Y.; Mori, Y. H.: Direct contact heat transfer to bubbles with simultaneous translation and growth. Numer. Heat Transfer: Part A 15 (1989) 509–524

    Google Scholar 

  9. Vuong, S. T.; Sadhal, S. S.: Growth and translation of a liquid-vapour compound drop in a second liquid. Part 2. Heat transfer. J. Fluid Mech. 209 (1989) 639–660

    Google Scholar 

  10. Clift, R.; Grace, J. R.; Weber, M. E.: Bubbles, Drops and Particles. New York: Academic Press 1978

    Google Scholar 

  11. Mori, Y. H.; Ehara, N.: Direct-contact heat transfer to a spherical-cap liquid/vapor two-phase bubble. Int. J. Heat Transfer 35 (1992) 63–72

    Google Scholar 

  12. Grace, J. R.: Shapes and velocities of bubbles rising in infinite liquids. Trans. Instn Chem. Engrs 51 (1973) 116–120

    Google Scholar 

  13. Shimizu, Y.; Mori, Y. H.: Evaporation of single liquid drops in an immiscible liquid at elevated pressures: experimental study withn-pentane and R113 drops in water. Int. J. Heat Mass Transfer 31 (1988) 1843–1851

    Google Scholar 

  14. Matsubara, H.; Murase, M.; Mori, Y. H.; Nagashima, A.: Measurement of the surface tensions and the interfacial tension ofn-pentane-water and R113-water systems. Int. J. Thermophys. 9 (1988) 409–424

    Google Scholar 

  15. Wellek, R. M.; Agarwal, A. K.; Skelland, A. H. P.: Shape of liquid drops moving in liquid media. AIChE J. 12 (1966) 854–862

    Google Scholar 

  16. Lee, K.; Barrow, H.: Transport processes in flow around a sphere with particular reference to the transfer of mass. Int. J Heat Mass Transfer 11 (1968) 1013–1026

    Google Scholar 

  17. Isenberg, J.; Sideman, S.: Direct contact heat transfer with change of phase: bubble condensation in immiscible liquids. Int. J. Heat Mass Transfer 13 (1970) 997–1011

    Google Scholar 

  18. Çoban, T.; Boehm, R.: Performance of a three-phase, spray-column, direct-contact heat exchanger, Trans. ASME, J. Heat Transfer 111 (1989) 166–172

    Google Scholar 

  19. Sideman, S.; Hirsch, G.: Direct contact heat transfer with change of phase. III. Analysis of the transfer mechanism of drops evaporating in immiscible liquid media. Israel J. Technol. 2 (1964) 234–241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, Y.H., Ehara, N. Direct-contact heat transfer to a spherical liquid/vapor two-phase bubble trailing a wake. Wärme- und Stoffübertragung 27, 337–345 (1992). https://doi.org/10.1007/BF01600023

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01600023

Keywords

Navigation