Skip to main content
Log in

On the feasibility of heat-exchange processes in uninsulated equipment

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Strictly speaking, the common two-fluid heat exchanger is a special version of a three-fluid exchanger because the environment also participates in the energy exchange. In a number of situations this effect is significant and leads to either reduced or increased area requirements, depending on the purpose of the exchange operation. With certain combinations of the system parameters it is even impossible to achieve an envisaged temperature change. For some typical flow arrangements these combinations are established in an analytic form so that one can rapidly assess the feasibility of a desired process without actually performing the rather tedious design calculations.

Zusammenfassung

Wegen des grundsätzlich immer vorhandenen Wärmeaustausches mit der Umgebung ist der gewöhnliche Zweistoff-Wärmeaustauscher als Sonderform des Dreistoff-Wärmeaustauschers aufzufassen. In zahlreichen Situationen führt der Umgebungseinfluß zu merklich vergrößerten oder reduzierten Austauschflächen, je nach dem Zweck des Prozesses. Darüberhinaus läßt sich eine gewünschte Temperaturänderung unter gewissen Bedingungen überhaupt nicht mehr erreichen. Für einige typische Stromführungen werden diese Bedingungen hergeleitet; damit kann man direkt und ohne größeren Rechenaufwand feststellen, ob und für welche Parameterkombinationen ein angestrebter Austauschprozess realisierbar ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cp :

specific heat capacity, Jkg−1K−1

m:

mass flow-rate, kg s−1

r:

tube radius, m

T:

temperature, K

Ui,0 :

overall heat-transfer coefficient between two fluids, Wm−2K−1

z:

axial length coordinate of heat exchanger, m Dimensionless quantities

B1,2,C1,2D1,2 :

coefficients defined by Eqs. (9) to (11)

C=mi cpi/(m0cp0 :

ratio of heat capacity rates

U=r0U0/(riUi):

ratio of weighted transfer coefficients

Δ=(T01-Ta)/(T01-Ti1):

characteristic temperature ratio

ζ:

axial length coordinate of heat exchanger

a:

surroundings

i:

tube-side

0:

shell-side

1:

inlet of tube-side fluid

2:

outlet of tube-side fluid

*:

at temperature extremum

References

  1. K. Nesselmann: Der Einfluß der Wärmeverluste auf Doppelrohrwärmeaustauscher, Z. ges. Kälteindustrie,35 (1928) 62/67

    Google Scholar 

  2. J. Kern: Heat transfer in a rotary heat exchanger. Int. J. Heat Mass Transfer.17 (1974) 981/990

    Google Scholar 

  3. J. Wolf: General solution of the equations of parallel-flow multichannel heat exchangers, Int. J. Heat Mass Transfer7 (1964) 901/919

    Google Scholar 

  4. J.C. Chato; R.C. Laverman; J.M. Shah: Analysis of parallel flow, multi-stream heat exchangers, Int. J. Heat Mass Transfer14 (1971) 1691/1703

    Google Scholar 

  5. D.D. Aulds; R.F. Barron: Three-fluid heat exchanger effectiveness. Int. J. Heat Mass Transfer10 (1967) 1457/1462

    Google Scholar 

  6. H. Hausen: Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Berlin: Springer (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, J. On the feasibility of heat-exchange processes in uninsulated equipment. Wärme- und Stoffübertragung 9, 267–272 (1976). https://doi.org/10.1007/BF01003578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01003578

Keywords

Navigation