Skip to main content
Log in

The conformation of linear gramicidin is sequence dependent

A monolayer and infrared study

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A comparative monolayer and infrared study of analogues of gramicidin A containing either tyrosines or naphthylalanines instead of tryptophans indicates that the nature of the aromatic residues influences the favoured conformation of the peptides. Polar residues favour the single stranded ΠDL helix while non polar residues favour the double stranded helix. For partly tryptophan to naphthylalanine substituted analogues the positions of the substitutions orientate the favored conformation. The nature of these substitutions may also modify the peptide-lipid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen OS, Koeppe REII (1992) Dimer versus tetramer. Biophys J 61:590

    Google Scholar 

  • Becker MD, Greathouse DV, Koeppe REII, Andersen OS (1991) Amino acis sequence modulation of gramicidin channel function: Effects of tryptophan-to-phenylalanine substitution on the single-channel conductance and duration. Biochemistry 30: 8830–9939

    CAS  PubMed  Google Scholar 

  • Benamar D, Daumas P, Trudelle Y, Calas B, Bennes R, Heitz F (1993) Influence of the nature of the aromatic side-chain on the conductance of the channel of linear gramicidin: study of a series of 9,11,13,15-Tyr(O-protected) derivatives. Eur Biophys J 22: 145–150

    Google Scholar 

  • Benayad A, Benamar D, Van Mau N, Page G, Heitz F (1991) Single channel and monolayer studies of acylated gramicidin A: influence of the length of the alkyl group. Eur Biophys J 20:209–213

    Google Scholar 

  • Briggs MS, Cornell DG, Dluhy RA, Gierasch LM (1986) Conformations of signal peptides induced by lipids suggest initial step in protein export. Science 233:206–208

    Google Scholar 

  • Cifu AS, Koeppe EII, Andersen OS (1992) On the supramolecular structure of gramicidin channels. The elementary conducting unit is a dimer. Biophys J 61:189–203

    Google Scholar 

  • Daumas P, Benamar D, Heitz F, Ranjalahy-Rasoloarijao L, Mouden R, Lazaro R, Trudelle Y, Pullman A (1991) How can the aromatic side chains modulate the conductance of the gramicidin channel: a new approach using non-coded amino acids. Int J Pept Protein Res 38:218–228

    Google Scholar 

  • Davion-Van Mau N, Daumas P, Lelièvre D, Trudelle Y, Heitz F (1987) Linear gramicidins at the air water interface. Biophys J 51:843–845

    Google Scholar 

  • Fonseca V, Daumas P, Ranjalahy-Rasoloarijao L, Heitz F Lazaro R, Trudelle Y, Andersen OS (1992) Gramicidin channels that have no tryptophan residues. Biochemistry 31:5340–5350

    Google Scholar 

  • Gaines GL Jr (1965) In: Insoluble monolayers at liquid gas interfaces. Interscience, New York, pp 136–207

    Google Scholar 

  • Heitz F, Lotz B, Spach G (1975) αDL and ΠDL helices of alternating poly-γ-benzyl-D-L-glutamate. J Mol Biol 92:1–13

    Google Scholar 

  • Heitz F, Trudelle Y, Spach G (1982) Single channels of 9,11,13,15-destryptophyl-phenylalanine-gramicidin A. Biophys J 40: 87–89

    Google Scholar 

  • Heitz F, Heitz A, Trudelle Y (1986) Conformations of gramicidin A and its 9,11,13,15-phenylalanine analog in dimethylsulfoxide and chloroform. Biophys Chem 24:149–160

    Google Scholar 

  • Heitz F, Daumas P, Van Mau N, Lazaro R, Trudelle Y, Etchebest C, Pullman A (1988) Linear gramicidins: influence of the nature of the aromatic side chains on the channel conductance. In: Transport through membranes: Carriers, channels and pumps. Pullman A et al. (eds.) Kluwer, London New York, pp 147–165

    Google Scholar 

  • Hu W, Lee K-C, Cross TA (1993) Tryptophans in membrane proteins: Indole ring orientation and functional implications in the gramicidin channel. Biochemistry 32:7035–7047

    Google Scholar 

  • Katsaras J, Prosser RS, Stinson RH, Davis JH (1992) Constant helical pitch of the gramicidin channel in phospholipid bilayers. Biophys J 61:827–830

    Google Scholar 

  • Koeppe RE, Hodgson, K, Stryer L (1978) Helical channels in crystals of gramicidin A and of a cesium-gramicidin A complex: an X-rays diffraction study. J Mol Biol 121:41–54

    Google Scholar 

  • Langs DA (1988) Three-dimensional structure at 0.86.Å of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science 241:188–191

    Google Scholar 

  • Langs DA, Smith GD, Courseille C, Précigoux G, Hospital M (1991) Monoclinic uncomplexed double-stranded, antiparallel, left handed β5,6-helix (↑↓β5.6) structure of gramicidin A: Alternate patterns of helical association and deformation. Proc Natl Acad Sci, USA 88:5345–5349

    Google Scholar 

  • Lelièvre D, Trudelle Y, Heitz F, Spach G (1989) Synthesis and characterization of retro gramicidin A-DAla-gramicidin A, a 31-residue-long gramicidin analogue. Int J Pept Protein Res 33:379–385

    Google Scholar 

  • Lotz B, Colonna-Cesari F, Heitz F, Spach G (1976) A family of double helices of alternating poly (γ-benzyl-D-L-glutamate), a stereochemical model for gramicidin A. J Mol Biol 106:915–942

    Google Scholar 

  • Ranjalahy-Rasoloarijao L, Lazaro R, Daumas P, Heitz F (1989) Synthesis and ionic channel of a linear gramicidin containing naphthylalanine instead of tryptophane. Int J Pept Protein Res 33:273–280

    Google Scholar 

  • Sarges R, Witkop B (1965) Gramicidin A. The structure of valine and isoleucine gramicidin A. J Am Chem Soc 87:2011–2020

    Google Scholar 

  • Stark G (1992) Arguments in favor of a aggregational model of the gramicidin channel: a reply. Biophys J 61:588–589

    Google Scholar 

  • Stark G, Strässle M, Takacz Z (1986) Temperature jump and voltage jump experiments at planar lipid membranes supported an aggregational (micellar) model of the gramicidin A ion channel. J Membr Biol 89:23–37

    Google Scholar 

  • Trudelle Y, Heitz F (1987) Synthesis and characterization of Tyr(Bzl)9,11,13,15 and Tyr9,11,13,15 gramicidin A. Int J Pept Protein Res 30:163–169

    Google Scholar 

  • Trudelle Y, Daumas P, Heitz F, Etchebest C, Pullman A (1987) Experimental and theoretical study of gramicidin P, an analog of gramicidin A with a methylamine C-terminal. FEBS Lett 216:11–16

    Google Scholar 

  • Urry DW (1971) The gramicidin A transmembrane channel: a proposed Π(LD) helix. Proc Natl Acad Sci, USA 68:672–676

    Google Scholar 

  • Van Mau N, Trudelle Y, Daumas P, Heitz F (1988) Mixed monolayers of linear gramicidins and phospholipid. Surface pressure and surface potential studies. Biophys J 54:563–567

    Google Scholar 

  • Veatch WR, Fossel ET, Blout ER (1974) The conformation of gramicidin A. Biochemistry 13:5249–5256

    Google Scholar 

  • Wallace BA, Janes RW (1991) Co-crystals of gramicidin A and phospholipid. A system for studying the structure of a transmembrane channel. J Mol Biol 217:625–627

    Google Scholar 

  • Wallace BA, Ravikumar K (1988) The gramicidin pore: Crystal structure of a cesium complex. Science 241:182–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: F. Heitz

Chemical structures of the gramicidin A analogues mentioned in this paper. The differences from gramicidin A are underlined. GM: GT:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Mau, N., Bonnet, B., Benayad, A. et al. The conformation of linear gramicidin is sequence dependent. Eur Biophys J 22, 447–452 (1994). https://doi.org/10.1007/BF00180165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00180165

Key words

Navigation