Skip to main content
Log in

Lactose continuous fermentation with cells recycled by ultrafiltration and lactate separation by electrodialysis: model identification

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

An off-line parameter estimation method has been developed to predict the dynamic behaviour of a continuous lactose fermentation system. The model used is an unstructured model taking into account cell growth, substrate consumption, and metabolite production (lactic acid). This method, based on the Hooke-Jeeves non-linear-programming technique, results in a good estimation of the biological parameters of the model, and so gives a better understanding of the different phenomena involved in lactose fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cp, Cs, Cz, Dp, Ds, Dz :

coefficients in system (A)

Fe :

bioreactor influent flow rate (1/h)

I :

current in the ED unit (A)

J :

lactate flux in the ED unit (g/h)

Kd :

mortality constant (h-1)

Kp :

product inhibition constant (g/l)

Ks :

strbstrate saturation constant (g/l)

P 0 :

product concentration in the bioreactor (g/l)

P 1 :

product concentration in the D tank (g/l)

P 0r :

estimation of P 0 (g/l)

Q 0 :

retentate flow rate (UF influent) (1/h)

Q 1 :

permeate flow rate (1/h)

Q 22 :

cell bleed flow rate (1/h)

Q 3 :

recycling flow rate in the ED (influent) (1/h)

Se :

substrate concentration in the influent (g/l)

S 0 :

supstrate concentration in the bioreactor (g/l)

S 1 :

substrate concentration in tank D (g/l)

S 0r :

estimation of S 0 (g/l)

t :

time (h)

V 0 :

fermentation broth volume (1)

V 1 :

tank D volume (1)

X 0 :

biomass concentration in the bioreactor (g/l)

Y P/S :

(=1/Y S/P) lactic acid yield coefficient (g lactic acid/g lactose consumed)

Y X/S :

(=1/Y S/X) cell yield coefficient (g cells produced/g lactose consumed)

Y X/Z :

(=1/Y Z/X) second cell yield coefficient (g cells produced/g nitrogen consumed)

Y x, Y m :

input mathematical parameters of the linear system (M 2)

Ze :

nitrogen concentration in the influent (g/l)

Z 0 :

nitrogen concentration in the bioreactor (g/l)

Z 1 :

nitrogen concentration in tank D (g/l)

Z 0r :

estimation of Z 0 (g/l)

α, β:

constants of the Luedeking and Piret's model

μ:

specific growth rate (h-1)

μmax :

maximum specific growth rate (h-1)

References

  • Aborhey S, Williamson D (1978) State and parameter estimation of microbial growth processes. Automatica 14:493–498

    Google Scholar 

  • Accolas JP, Bloquel R, Didienne R, Regnier J (1977) Propriétés acidifiantes des bactéries thermophiles en relation avec la fabrication de yoghourt. Lait 57:1–23

    Google Scholar 

  • Bastin G, Dochain D (1985) Adaptative estimation of microbial growth rates. In: Dillings SA (ed) Proc. 7th IFAC/IFORS Symposium on Identification and System Parameter estimation, Pergamon, Oxford, England, pp 1161–1166

    Google Scholar 

  • Cardenas R, Boyaval P, Corre C (1987) Mieux conduire les procédés de fermentation. Mesures, March 23rd:91–96

  • Dochain D, Bastin G (1984) Adaptative identification and control algorithms for nonlinear bacterial growth systems. Automatica 20:621–634

    Google Scholar 

  • Holmberg A, Ranta J (1982) Procedures for parameter and state estimation of microbiol growth process models. Automatica 18:181–193

    Google Scholar 

  • Hooke R, Jeeves JA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Machinery 8:212–229

    Google Scholar 

  • Nihtila M, Harmo P, Perttula M (1984) Real-time growth estimation in batch fermentation. In: Gertler J, Keviczky L (eds) Proc. 9th IFAC triennal world congress: Bridge between control science and technology, Pergamon, Oxford, England, pp 225–230

    Google Scholar 

  • Raucourt A de (1987) Modélisation et conduite d'un procédé de valorisation du lactose par fermentation continue. PhD thesis, ESE, Rennes, France

  • Stephanopulos G, San K-Y (1983) On-line estimation of time-varying parameters: A application to biochemical reactors. In: Halme A (ed) Modelling and control of biotechnical processes, Pergamon Press, Oxford, pp 195–199

    Google Scholar 

  • Vialas C (1984) Modélisation et contribution à la conception d'un procédé biotechnologique. PhD thesis, INPG, Grenoble, France

  • Vialas C, Cheruy A (1985) Modelling and simulation of light-dependent biotechnological processes. In: Johnson A (ed) Proc. 1st IFAC Symposium on modelling and control of biotechnological process, Pergamon, Oxford, England, pp 155–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Raucourt, A., Girard, D., Prigent, Y. et al. Lactose continuous fermentation with cells recycled by ultrafiltration and lactate separation by electrodialysis: model identification. Appl Microbiol Biotechnol 30, 528–534 (1989). https://doi.org/10.1007/BF00263860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00263860

Keywords

Navigation