Skip to main content

Advertisement

Log in

Differentiation of malignant and degenerative bone lesions using dexamethasone interventional 3- and 24-hour bone scintigraphy

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Seventy-seven adult patients with suspected skeletal metastases were divided into two groups. In group A (n=30), following intravenous administration of 20 mCi (740 MBq) of technetium-99m methylene diphosphonate (99mTc-MDP), 3- and 24-h scintigraphy of bone lesions was performed. The 24/3 h lesion to bone background radiouptake ratio (RUR) was calculated for each lesion. In group B (n=47), the same procedure was followed with dexamethasone intervention (10 mg in 24 h) following the 3-h acquisition. In group A, after determination of the critical point, malignant and degenerative bone lesions could be separated with a sensitivity, specificity and accuracy of 0.76, 0.72 and 0.73, respectively. The mean RUR of the malignant lesions was 1.20± 0.23, and that of the benign lesions, 0.95± 0.15. In group B cases, significantly increased sensitivity, specificity and accuracy of 0.87, 0.94 and 0.92, respectively, were found (P<0.001). The mean RUR of the malignant lesions was 1.48± 0.34, and that of degenerative lesions, 0.88± 0.19. Dexamethasone interventional bone scintigraphy seems to be a new cost-effective method for differentiating malignant from degenerative bone lesions using the RUR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boland PJ, Lane JM, Sudarshan N, et al. Metabolic disease of the spine. Clin Orthop 1982; 109: 95–99.

    Google Scholar 

  2. Osmond JD, Pendergrass HP, Potsaid MS. Accuracy of 99m Tc-diphosphonate bone scans and roentgenograms in detection of prostate, breast and lung carcinoma metastases. AJR 1975;124: 972–979.

    Google Scholar 

  3. Rosenberg RD, Mettler FA, Christie JH. The radionuclide bone scan in malignant disease. In: Mettler FA, ed. Radionuclide bone imaging and bone densitometry. New York: Churchill Livingstone; 1988: 63–86.

    Google Scholar 

  4. Guan S, Chu L, Hwang W, Chen W. The differential diagnosis of benign and malignant bony lesions in bone scanning. Clin Nucl Med 1990; 15: 424–427.

    Google Scholar 

  5. Arnstein NB, Harbert JC, Byrne PJ. Efficacy of bone and liver scanning in breast cancer patients treated with adjuvant chemotherapy. Cancer 1984; 54: 2243–2247.

    Google Scholar 

  6. Gold RH, Basset LW, Radionuclide evaluation of skeletal metastases: practical considerations. Skeletal Radiol 1986; 15: 1–9.

    Google Scholar 

  7. Perez DJ, Milan J, Ford HT, et al. Detection of breast carcinoma metastases in bone: relative merits of X-rays and skeletal scintigraphy. Lancet 1983;II: 613–616.

    Google Scholar 

  8. Kunkler IH, Merrick MV, Rodger A. Bone scintigraphy in breast cancer: a nine year followup. Clin Radiol 1985; 36: 279–282.

    Google Scholar 

  9. Israel O, Front D, Frenkel A, Klienhaus U. 24-hour/4 hour ratio of technetium-99m methylene disphosphonate uptake in patients with bone metastases and degenerative bone changes. J Nucl Med 1985; 26: 237–240.

    Google Scholar 

  10. Kashyap R, Bhatnagar A, Mondal A, Sawroop K. 24/3 Hour radio-uptake technique for differentiating degenerative and malignant bone lesions in bone scintigraphy. Australas Radiol 1993;37: 198–200.

    Google Scholar 

  11. Jacobson AF, Stomper PC, Jochelson MS, et al. Association between number and sites of new bone abnormalities and presence of skeletal metastases in patients with breast cancer. J Nucl Med 1990; 31: 387–392.

    Google Scholar 

  12. Silberstien EB, Gelfond MJ, Muroff LR. Bone scintigraphy in primary osseous neoplasia and invasive marrow disorders of adults. In: Silberstien EB, ed. Bone scintigraphy. Mt. Kisco, N.Y.: Futura; 1984: 259.

    Google Scholar 

  13. Frankel DG, Daffner RH, Wang SE. Disseminated tuberculosis. Skel Radiol 1991; 20: 130–133.

    Google Scholar 

  14. Fordham EW, Ali A, Turner DA, et al. Inflammatory disease. In: Atlas of total body radionuclide imaging. New York: Harper & Row; 1982: 396–425.

    Google Scholar 

  15. Elgazzar AH, Abdel Dayem HM, Shible O, Brucellosis simulating metastases on Tc-99m MDP bone scan. Clin Nucl Med 1991; 16: 189–191.

    Google Scholar 

  16. Corconan RJ, Thrall JH, Kyle RW et al. Solitary abnormalities in bone scans of patients with extraosseous malignancies. Radiology 1976; 121: 663–667.

    Google Scholar 

  17. Collins JD, Basset L, Main GD, et al. Percutaneous biopsy following positive bone scans. Radiology 1979; 132: 439.

    Google Scholar 

  18. Schirazi RH, Rayadu GVS, Fordham EW. Review of solitary 18-F bone scan lesions. Radiology 1974; 112: 369–372.

    Google Scholar 

  19. Edeiken J. Radiological approach to diagnosis of bone disease. In: Goswitz FA, Andrews GA, Viomonte M, eds. Clinical use of radionuclides: critical comparison with other techniques. Washington DC: USAEC; 1972: 90–100.

    Google Scholar 

  20. Schutte HE. The influence of bone pain on the results of bone scan. Cancer 1979; 44: 2039.

    Google Scholar 

  21. Fordham EW, Ali A. Skeletal imaging in malignant disease. In Gottschalk A, Hoffer PB, Potchen EJ, eds. Diagnostic nuclear medicine. Baltimore: Williams and Wilkins; 1988: 1011–1032.

    Google Scholar 

  22. O'Mara RE. Benign bone disease. In: Gottschalk A, Hoffer PB, Potchen EJ, eds. Diagnostic nuclear medicine. Baltimore: Williams and Williams; 1988: 1033–1075.

    Google Scholar 

  23. Feig SA. Imaging techniques and guidelines for evaluation and follow-up of breast cancer patients. CRC Crit Rev Diagn Imaging 1987; 27: 1–16.

    Google Scholar 

  24. Podoloff DA, Kim EE. ‘Sub’-Superscan: manifestation of bone marrow metastases? Clin Nucl Med 1989; 14: 597–602

    Google Scholar 

  25. Gold RI, Seeger LL, Bassett LW, Steckel RJ. An integrated approach to the evaluation of metastatic bone disease. Radiol Clin North Am 1990; 28: 471–483.

    Google Scholar 

  26. Smoker WRK, Godersky JC, Knutzone RK, et al. MR imaging in evaluating metastatic spinal disease. AJNR 1987; 8: 901–905.

    Google Scholar 

  27. Murphy WA. Imaging bone tumours in the 1990's. Cancer 1991; 67: 1169–1176.

    Google Scholar 

  28. Bates D, Ruggieri P. Imaging modalities for evaluation of spine. Radiol Clin North Am 1991; 29: 675–690.

    Google Scholar 

  29. Frank JA, Ling A, Patronas NJ, et al. Detection of malignant bone tumours: MR imaging vs scintigraphy. Am J Roentgenol 1990; 155: 1043–1048.

    Google Scholar 

  30. Watt I. Musculoskeletal system. In: Davies ER, Thomas WEG, eds. Nuclear medicine: applications to surgery. Kent, UK.: Castle House; 1988: 219–253.

    Google Scholar 

  31. Bocking A. Cytological vs. histological evaluation of percutaneous biopsy. Cardiovasc Intervent Radiol 1991; 14: 5–12.

    Google Scholar 

  32. Citrin DL, Bessent RG, McGinley E, et al. Dynamic studies with Tc-99m HEDP in normal subjects and in patients with bone tumors. J Nucl Med 1975; 16: 886–890.

    Google Scholar 

  33. Castronovo FP, McKusick KA, Strauss HW. The 4 h/24 h 99mTc-MDP whole body retention: a new index in bone pathology. Nucl Med Biol 1986; 13(6): 599–602.

    Google Scholar 

  34. Eisenhut M. Iodine 131 labeled diphosphonates for the palliation of bone metastases. 1. Organ distribution and kinetics of I-131-BDP 3 in rats. J Nucl Med 1984; 25: 1356–1361.

    Google Scholar 

  35. Eisenhut M, Berberich R, Kimming B, Oberhausen E. Iodine 131 labeled diphosphonates for palliation of bone metastases. 11. Preliminary results with iodine-131 BDP 3. J Nucl Med 1986; 27: 1255–1261.

    Google Scholar 

  36. Galasko CBS. Editorial: mechanism of uptake of bone imaging isotopes by skeletal metastases. Clin Nucl Med 1980; 5: 565–568.

    Google Scholar 

  37. Galasko CBS. Bone metastases studies in experimental animals. Clin Orthop Rel Res 1982; 169: 269–285.

    Google Scholar 

  38. Garcia JF. Bone growth and metabolism. In: Mettler FA, ed. Radionuclide bone imaging and densitometry. New York: Churchill Livingstone; 1988: 1–12.

    Google Scholar 

  39. Burkhardt R, Frisch B, Schlag R, Sommerfeld W. Carcinomatous osteodysplasia. Skel Radiol 1982; 8: 169.

    Google Scholar 

  40. Guyton A. Text Book of medical physiology, 7th edn. Philadelphia: Saunders; 1986: 937–953.

    Google Scholar 

  41. Mettler FA, Monsein L, Rosenberg RD. Radionuclides and normal bone scan. In: Mettler FA, ed. Radionuclide bone imaging and densitometry. New York: Churchill Livingstone, 1988: 13–29.

    Google Scholar 

  42. Charkes ND. Skeletal blood flow: implications for bone scan interpretation. J Nucl Med 1980; 21: 91–98.

    Google Scholar 

  43. Thrall JH, Geslien GE, Corcoran RJ, Johnson MC. Abnormal radionuclide deposition patterns adjacent to focal skeletal lesions. Radiology 1975; 115: 659–663.

    Google Scholar 

  44. Hughes SPF, Davies R, Khan RA, Kelly P. Fluid space in bone. Clin Orthop 1978; 134: 332–341.

    Google Scholar 

  45. Schwartz Z, Shani J, Soskolne WA, et al. Uptake and biodistribution of technetium-99m MDP during rat tibial bone repair. J Nucl Med 1993; 34: 104–108.

    Google Scholar 

  46. Williams GH, Dluhy RG. Diseases of the adrenal cortex. In: Harrison's principles of internal medicine, 10th edn. Singapore: McGraw Hill, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: A. Bhatnagar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, A., Mondal, A., Kashyap, R. et al. Differentiation of malignant and degenerative bone lesions using dexamethasone interventional 3- and 24-hour bone scintigraphy. Eur J Nucl Med 21, 609–614 (1994). https://doi.org/10.1007/BF00285582

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285582

Key words

Navigation