Skip to main content
Log in

Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The dielectric constants and dissipation factors of LiAlSi2O6, CaAl2Si2O8 and CaMgSi2O6 in both the crystalline (α-spodumene, anorthite, and diopside) and amorphous forms were determined at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: spodumene κ′ 11=7.30 tan δ= 0.0007 κ22=8.463 tan δ= 0.0002 κ33 =11.12 tan δ= 0.0007 anorthite κ′ a *=5.47 tan δ= 0.0009 κb *=8.76 tan δ= 0.0010 κc *=7.19 tan δ= 0.0013 diopside κ11=9.69 tan δ= 0.0016 κ22 = 7.31 tan δ= 0.0007 κ33=7.29 tan δ= 0.00019 LiAlSi2O6 κ′=8.07 tan δ= 0.047 amorphous CaAl2Si2O8 κ′=7.50 tan δ= 0.0024 amorphous CaMgSi2O6 κ′=8.89 tan δ= 0.0021 amorphous The dielectric properties of a spodumene glass, progressively crystallized at different conditions, were also determined. As the crystallization temperature was increased from 720 to 920° C, κ′ increased from 6.22 to 6.44. The dissipation factor, tan δ, remained constant at 0.020. Similarly, as the crystallization time at 750° C increased from 0.5 hr to 6.0 hr, κ′ increased from 6.28 to 6.35. The deviations of the measured dielectric polarizabilities as determined from the Clausius-Mosotti equation from those calculated from the sum of oxide polarizabilities according to α D(mineral, glass) = σ α D(oxides) are +7.4% for α-spodumene, +1.2% for diopside, and +28.0, +19.6 and +15.9% for amorphous spodumene, anorthitie and diopside compositions, respectively. Positive deviations in α-spodumene and anorthite are consistent with lower than normal apparent cation bond valence sums and are believed to be evidence for loosely bonded “rattling” Li and Ca ions. Diopside, with Ca and Mg ions having normal bond valence sums, exhibits no abnormal deviation from additivity. Larger positive deviations in amorphous SiO2, LiAlSi2O6, CaAl2Si2O8 and CaMgSi2O6 are postulated to arise from a combination of loosely bonded cations and disordered O= ions where the oxygen dielectric polarizability increased from its normal value of 2.0 Å3 in well-behaved oxides to 2.2–3.0 Å3 in the amorphous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andeen C, Schuele D, Fontanella J (1974) Effect of OH- on the low-frequency dielectric constant of vitreous silica. J Appl Phys 45:1071–1074

    Google Scholar 

  • Anderson OL, Bommel HE (1955) Ultrasonic absorption in fused silica at low temperatures and high frequencies. J Am Ceram Soc 38:125–131

    Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF and φ(ϱ-z) Procedures. In: Newbury DE (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 239–256

    Google Scholar 

  • Bahat D (1969) Compositional study and properties characterization of alkaline earth feldspar glasses and glass-ceramics. J Mater Sci 4:855–860

    Google Scholar 

  • Binsted N, Greaves GN, Henderson CMS (1985) An EXAFS study of glassy and crystalline phases of composition CaAl2Si2O8 (anorthite) and CaMgSi2O6 (diopside). Contrib Mineral Petrol 89:1038109

    Google Scholar 

  • Bosman AJ, Havinga EE (1963) Temperature dependence of dielectric constants of cubic ionic compounds. Phys Rev 129:1593–1600

    Google Scholar 

  • Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Google Scholar 

  • Bunget I, Popescu M (1984) Physics of Solid Dielectrics. Elsevier, Amsterdam, p 247

    Google Scholar 

  • Bussmann A, Bilz H, Roenspiess R, Schwarz K (1980) Oxygen polarizability in ferroelectric phase transitions. Ferroelectrics 25:343–346

    Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, Jadeite, spodumene and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Church RH, Webb WE, Salsman JB (1988) Dielectric properties of low-loss materials. U.S. Bureau of Mines Rept. of Investig 9194:1–23

    Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral Soc Am Spec Paper 2:31–50

    Google Scholar 

  • Coker H (1976) Empirical free-ion polarizabilities of the alkali metal, alkaline earth metal and halide ions. J Phys Chem 80:2078–2084

    Google Scholar 

  • Combes JM, Brown GE, Waychunas GA (1991) X-ray absorption study of the local Ca environment in silicate glasses. In: Hasnain SS, Ellis Horwood (ed) X-Ray Absorption Fine Structure. New York, pp 312–314

  • Deer WA, Howie RA, Zussman J (1963) Rock Forming Minerals, vol. 2. Chain Silicates. Longmans, London, p 93

    Google Scholar 

  • Dunmur DA (1972) The local electric field in anisotropic molecular crystals. Mol Phys 23:109–115

    Google Scholar 

  • Fang PH, Brower WS (1963) Dielectric constant of Cr2O3 crystals. Phys Rev 129:1564

    Google Scholar 

  • Fontanella J, Andeen C, Schuele D (1974) Low frequency dielectric constants of α-quartz, sapphire, MgF2 and MgO. J Appl Phys 45:2852–2854

    Google Scholar 

  • Fowler PW, Madden PA (1985) In-crystal polarizability of O2-. J Phys Chem 89:2581–2585

    Google Scholar 

  • Galeener FL (1985) A model for the distribution of bond angles in vitreous SiO2. Phil Mag Lett B51:L1-L6

    Google Scholar 

  • Gdula RA (1971) Anorthite ceramic dielectrics. Bull Am Ceram Soc 50:555–557

    Google Scholar 

  • Geissberger AE, Bray PJ (1983) Determinations of structure and bonding in amorphous SiO2 using 17O NMR. J Noncrystallogr Sol 54:121–137

    Google Scholar 

  • Gorsich E (1982) The structure of SiO2- Current Views. Ceram Int 8:3–16

    Google Scholar 

  • Hayashi K, Fukui M (1980) Calcium-aluminosilicate ceramics as low loss dielectrics. Mem Fac Ind Arts, Kyoto Tech Univ, Sci Tech 29:58–73

    Google Scholar 

  • Hayashi K, Nishioka Y, Okamoto Y (1990) Fabrication of diopside cermics by densification and crystallization of glass compacts and their dielectric properties. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 98:801–805

    Google Scholar 

  • Kirsch R, Gerard A, Wautelet M (1974) Nuclear quadrupole couplings and polarizability of the oxygen ion in spinel-structure compounds. J Phys 7:3633–3644

    Google Scholar 

  • Konnert JH, Karle JH, Ferguson GA (1973) Crystalline ordering in silica and germania glasses. Science 179:177–178

    Google Scholar 

  • Kumar AH, McMillan PW, Tummala RR (1981) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper. U.S. Patent 4,301,324. Nov. 17. pp 14

  • Kumar AH, McMillan PW, Tummala RR (1983) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper. U.S. Patent 4,413,061. Nov. 1, 1983

  • Larsen ES (1909) The relation between the refractive index and the density of some crystallized silicates and their glasses. Am J Sci 28:263–274

    Google Scholar 

  • Larssen PA (1963) Ceramic dielectrics. Insulation Sept 27–32

  • Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Mineral 67:328–334

    Google Scholar 

  • Li CT, Peacor DR (1968) The crystal structure of LiAlSi2O6-II (β-spodumene). Z Kristallogr 126:46–65

    Google Scholar 

  • Lorentz L (1880) Über die Refraktionskonstanten. Ann Phys Chem 11:70–103

    Google Scholar 

  • Lorenz HA (1880) Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann Phys Chem 9:641–645

    Google Scholar 

  • Mahan GD (1980) Polarizabilities of ions in crystals. Sol State Ion 1:29–45

    Google Scholar 

  • McMillan PW, Partridge G (1972) The dielectric properties of certain ZnO-Al2O3-SiO2 glass-ceramics. J Mater Sci 7:847–855

    Google Scholar 

  • Megaw HD (1975) Ferroelectricity in Crystals. Methuen, London, pp 165–178

    Google Scholar 

  • Megaw HD, Kempster CJ, Radoslovich EW (1962) The structure of anorthite, CaAl2Si2O5. II. Description and discussion. Acta Crystallogr 15:1017–1035

    Google Scholar 

  • Mozzi RL, Warren BE (1969) The structure of vitreous silica. J Appl Cryst 2:164–172

    Google Scholar 

  • Navrotsky A, Geisinger KL, McMillan P, Gibbs GV (1985) The tetrahedral framework in glasses and melts-influences from molecular orbital calculation and implications for structure, thermodynamics and physical properties. Phys Chem Minerals 11:284–298

    Google Scholar 

  • Olhoeft GR (1981) “Electrical properties of rocks” in Physical Properties of Rocks and Minerals. Touloukian YS (ed) McGraw-Hill, New York, pp 257–329

    Google Scholar 

  • Okazaki K (1988) Advanced Technology in Electroceramics in Japan. Cer Bull 76:1946–1959

    Google Scholar 

  • Orgel LE (1958) Ferroelectricity and the structure of transition-metal oxides. Discussions of the Faraday Society 26:138–145

    Google Scholar 

  • Osaka T, Shindo I (1984) Infrared reflectivity and Raman scattering of lithium oxide single crystals. Sol State Commun 51:421–424

    Google Scholar 

  • Papike JJ (1987) Chemistry of the rock-forming silicates: ortho, ring, and single-chain structures. Rev Geophys 25:1483–1526

    Google Scholar 

  • Pearson EW, Jackson MD, Gordon RG (1984) A theoretical model for the index of refraction of simple ionic crystals. J Phys Chem 88:119–128

    Google Scholar 

  • Roberts R (1949) Dielectric constants and polarization of ions in simple crystals and barium titanate. Phys Rev 76:1215–1220

    Google Scholar 

  • Roberts R (1950) A theory of dielectric polarization in alkali halide crystals. Phy Rev 77:258–263

    Google Scholar 

  • Roberts R (1951) Polarizabilities of ions in perovskite-type crystals. Phy Rev 81:865–868

    Google Scholar 

  • Robie RA, Hemingway BS, Wilson WH (1978) Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Am Mineral 63:109–123

    Google Scholar 

  • Shannon RD (1991) Factors affecting the dielectric constants of oxides and fluorides. In: Proceedings of the International Conference on The Chemistry of Electronic Ceramic Materials, Jackson Hole, Wyoming. Aug. 17–22. NIST Special Publication 804, pp 457–471

  • Shannon RD, Rossman GR (1992) Dielectric constants of silicate garnets and the oxide additivity rule. Am Mineral 77:94–100

    Google Scholar 

  • Shannon RD, Subramanian MA (1989) Dielectric constants of chrysoberyl, spinel, phenacite and forsterite and the oxide additivity rule. Phys Chem Minerals 16:747–751

    Google Scholar 

  • Shannon RD, Subramanian MA, Mariano AM, Rossman GR (1989) Mineral dielectric constants and the oxide additivity rule. Symposium on Materials for Magneto-Optic Data Storage, San Diego, April 24–27. Proc Mater Res Soc

    Google Scholar 

  • Shannon RD, Subramanian MA, Allik TH, Kimura H, Kokta MR, Randles MH, Rossman GR (1990) Dielectric constants of yttrium and rare earth garnets, the polarizability of gallium oxide and the oxide additivity rule. Jo Appl Phys 67:3798–3802

    Google Scholar 

  • Shannon RD, Subramanian MA, Hosoya S, Rossman GR (1991a) Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule. Phys Chem Minerals 18:1–6

    Google Scholar 

  • Shannon RD, Oswald RA, Allik TH, Damen JPM, Mateika D, Wechsler BA, Rossman GR (1991b) Dielectric constants of Fe-, Ge-, and V-containing garnets and YVO4, the polarizabilities of Fe2O3, GeO2, and V2O5, and the oxide additivity rule. J Sol State Chem 95:313–318

    Google Scholar 

  • Shannon RD, Vega AJ, Subramanian MA, Chai BHT, Rossman GR (1992 a) Dielectric properties of berlinite (to be published)

  • Shannon RD, Subramanian MA, Mariano AN, Gier TE, Rossman GR (1992b) Dielectric constants of diaspore and B-, Be-, and P-containing minerals, the polarizabilities of B2O3 and P2O5 and the oxide additivity rule. Am Mineral 77:101–106

    Google Scholar 

  • Shannon RD, Oswald RA, Parise JB, Chai BHT, Byszewski P, Pajaczowska A, Sobolewski R (1992c) Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4 and SrLaAlO4 and deviations from the oxide additively rule. J Sol State Chem 98:90–98

    Google Scholar 

  • Subramanian MA, Shannon RD (1989) Dielectric constant of Y-stabilized zirconia, the polarizability of zirconia and the oxide additivity rule. Mat Res Bull 24:147–1483

    Google Scholar 

  • Subramanian MA, Shannon RD, Chai BHT, Abraham MM, Wintersgill MC (1989) Dielectric constants of BeO, MgO and CaO using the two-terminal method. Phy Chem Minerals 16:741–746

    Google Scholar 

  • Szigeti B (1949) Polarizability and dielectric constant of ionic crystals. Trans Far Soc 45:155–166

    Google Scholar 

  • Takubo J (1941) Versuche über die Dielektrizitätskonstanten einiger Mineralien und über das dielektrische Verhalten derselben bei Erhitzung. Mem Coll Sci, Kyoto Imperial University, Ser B 16:95–154

    Google Scholar 

  • Takubo J, Ukai Y, Kakitani S (1953) On the dielectric constants of minerals. Mineral J 1:3–24

    Google Scholar 

  • Taylor M, Brown GE (1979) Structure of mineral glasses. I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta 43:61–75

    Google Scholar 

  • Tessman JR, Kahn AH, Shockley W (1953) Electronic polarizabilities of ions in crystals. Phys Rev 92:890–895

    Google Scholar 

  • Westphal WB, Sils A (1972) “Dielectric Constant and Loss DATA” U.S. National Technical Information Service AFML-TR-72-39

  • Wright AF (1974) The structure of amorphous solids by X-ray and neutron diffraction. Adv Struct Res Diffr Methods 5:1–84

    Google Scholar 

  • Wright AF, Leadbetter AJ (1976) Diffraction studies of glass structure. Phys Chem Glasses 17:122–145

    Google Scholar 

  • Wright AF, Lehmann MS (1981) The structure of quartz at 25 and 590° C determined by neutron diffraction. J Solid State Chem 36:371–380

    Google Scholar 

  • Young JC, Finn AN (1940) Effect of composition and other factors on the specific refractivity and dispersion of glasses. J Res Nat Bur Stds 25:759–782

    Google Scholar 

  • Young RA, Post B (1962) Electron density and thermal effects in alpha quartz. Acta Crystallogr 15:337–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shannon, R.D., Dickinson, J.E. & Rossman, G.R. Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule. Phys Chem Minerals 19, 148–156 (1992). https://doi.org/10.1007/BF00202102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202102

Keywords

Navigation