Skip to main content
Log in

NMR, XRD and IR study on microcrystalline opals

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Microcrystalline opal-CT and opal-C were investigated by 29Si MAS NMR and 29Si {1H} cross polarisation MAS NMR spectroscopy, X-ray small angle scattering, X-ray powder diffraction and infrared absorption spectroscopy. The results are compared with those for non-crystalline precious opal (opal-AG), non-crystalline hyalite (opal-AN), moderately disordered cristobalite and with well ordered low-cristobalite and low-tridymite. Opal-C is confirmed to be strongly stacking disordered low-cristobalite with about 20 to 30% probability for tridymitic stacking. More extensively stacking disordered opal-CT does not contain detectable domains of low-cristobalite or low-tridymite. The stacking sequence is close to 50% cristobalite and 50% tridymitic. The local order decreases with increasing stacking disorder, so that the structural state of microcrystalline opals lies between cristobalite, tridymite and non-crystalline opals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams SJ, Hawkes GE, Curzon EH (1991) A solid state 29Si nuclear magnetic resonance study of opal and other hydrous silicas. Am Mineral 76:1863–1871

    Google Scholar 

  • Brawer S (1975) Theory of the vibrational spectra of some network and molecular glasses. Phys Rev B 11:3173–3194

    Article  Google Scholar 

  • Calvert SE (1983) Sedimentary geochemistry of silicon. In Aston SR (ed.) Silicon Geochemistry and Biogeochemistry. Academic Press, London, pp 143–186

    Google Scholar 

  • de Jong BHWS, van Hoek J, Veeman WS, Manson DV (1987) X-ray diffraction and 29Si magic angle spinning NMR of opals: Incoherent long- and short-range order in opal-CT. Am Mineral 72:1195–1203

    Google Scholar 

  • Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. John Wiley and Sons, Chichester

    Google Scholar 

  • Etchepare J, Merian M, Kaplan P (1978) Vibrational normal modes of SiO2. II. Cristobalite and tridymite. J Chem Phys 68:1531–1537

    Google Scholar 

  • Farnan I, Kohn SC, Dupree R (1987) A study of the structural role of water in hydrous silica glass using cross-polarisation magic angle spinning NMR. Geochim Cosmochim Acta 51:2869–2873

    Article  Google Scholar 

  • Flörke OW (1955) Zur Frage des “Hoch”-Cristobalit in Opalen, Bentoniten und Gläsern. Neues Jahrb Mineral Mh 217–224

  • Flörke OW (1967) Die Modifikationen von SiO2. Fortschr Mineral 44:181–230

    Google Scholar 

  • Flörke OW, Jones JB, Segnit RE (1973) The genesis of hyalite. Neues Jahrb Mineral Mh 82–89

  • Flörke OW, Flux S, Schröder B (1985) Hyalith vom Steinwitzhügel bei Kulmain. Neues Jahrb Mineral Abh 151:87–97

    Google Scholar 

  • Flörke OW, Graetsch H, Martin B, Röller K, Wirth R (1991) Nomenclature of micro- and non-crystalline silica minerals based on structure and microstructure. Neues Jahrb Mineral Abh, 163:19–42

    Google Scholar 

  • Füchtbauer H (1988) Sediment-Petrologie. Teil II: Sedimente und Sedimentgesteine. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp 501–542

    Google Scholar 

  • Graetsch H, Flörke OW (1991) X-ray powder diffraction patterns and phase relationship of tridymite modifications. Z Kristallogr 195:31–48

    Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1987) Structural defects in microcrystalline silica. Phys Chem Minerals 14:249–257

    Article  Google Scholar 

  • Graetsch H, Mosset A, Gies H (1990) XRD and 29Si MAS NMR study on some non-crystalline silica minerals. J Non-Cryst Solids, 119, 173–180

    Article  Google Scholar 

  • Jagodzinski H (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluß auf die Röntgeninterferenzen. I, II, und III, Acta Crystallogr 2:201–207, 208–214, 298–304

    Google Scholar 

  • Jagodzinski H, Laves F (1948) Eindimensional fehlgeordnete Kristallgitter. Schweiz Mineral Petrol Mitt 28:456–467

    Google Scholar 

  • Jones JB, Segnit ER (1971) The nature of opal. I. Nomenclature and constituent phases. J Geol Soc Australia 18:57–68

    Google Scholar 

  • Jones JB, Sanders JV, Segnit ER (1964) Structure of opal. Nature 204:990–991

    Google Scholar 

  • Kihara K (1977) An orthorhombic superstructure of tridymite existing between about 105 and 180° C. Z Kristallogr 146:185–203

    Google Scholar 

  • Langer K, Flörke OW (1974) Near infrared absorption spectra (4,000–9,000 cm-1) of opals and the role of “water” in these SiO2 · nH2O minerals. Fortschr Mineral 52:17–51

    Google Scholar 

  • Levin I, Ott E (1933) X-ray study of opals, silica glass and silica gel. Z Kristallogr 85:305–318

    Google Scholar 

  • Löns J, Hoffmann W (1987) Zur Kristallstruktur der inkommensurablen Raumtemperaturphase des Tridymits. Z Kristallogr 178:141–143

    Google Scholar 

  • Maciel GE, Sindorf DW (1980) Silicon-29 nuclear magnetic resonance study of the surface of silica gel by cross-polarisation and magic-angle spinning. J Am Chem Soc 102:7606–7607

    Google Scholar 

  • Mitchell RS, Tufts S (1973) Wood opal — a tridymite-like mineral. Am Mineral 58:717–720

    Google Scholar 

  • Murata KL, Nakata JK (1974) Cristobalitic stage in the diagenesis of diatomaceous shale. Science 814:567–568

    Google Scholar 

  • Rey Th (1966) Ultrarotabsorption von AlPO4 und SiO2 in Abhängigkeit von Fehlordnung und Temperatur. Z Kristallogr 123:263–314

    Google Scholar 

  • Sanders JV (1975) Microstructure and crystallinity of gem opals. Am Mineral 60:749–757

    Google Scholar 

  • Schneider H, Flörke OW (1986) High-temperature transformation of tridymite single crystals to cristobalite. Z Kristallogr 175:165–176

    Google Scholar 

  • Shuker R, Gammon RW (1970) Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys Rev Lett 25:222–225

    Article  Google Scholar 

  • Smith JV, Blackwell CS (1983) Nuclear magnetic resonance of silica polymorphs. Nature 303:223–225

    Google Scholar 

  • Treacy MMJ, Newsam JM, Deem MW (1991) A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc Royal Soc London A 433:499–520

    Google Scholar 

  • Wilson MJ, Russell JD, Tait JM (1974) A new interpretation of the structure of disordered α-cristobalite. Contrib Mineral Petrol 47:1–6

    Google Scholar 

  • Xiao Y, Kirkpatrick RJ, Kim YJ (1993) Structural phase transitions of tridymite: a 29Si MAS NMR investigation. Am Mineral 78:241–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graetsch, H., Gies, H. & Topalović, I. NMR, XRD and IR study on microcrystalline opals. Phys Chem Minerals 21, 166–175 (1994). https://doi.org/10.1007/BF00203147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203147

Keywords

Navigation