Skip to main content
Log in

Fission tracks in minerals: Annealing kinetics, track structure and age correction

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

It is shown that the annealing kinetics of fission tracks in apatite can be described by a sum of exponential decay functions. From an analysis of the temperature dependence of this annealing law it is concluded that the etchability of fission tracks is due to extended defects, i.e. systems of dislocation loops. The multiexponential annealing law is also applied to prove that the plateau correction method is basically correct, but rather as a method for determining a lower limit than the “true” fission track age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertagnolli E, Märk E, Bertel E, Pahl M, Märk TD (1981) Determination of palaeotemperatures of apatite with the fission-track method. Nucl Tracks 5:175–180

    Google Scholar 

  • Bertel E (1978a) Über die Temperaturabhängigkeit der Strukturen von Uranspaltspuren in Apatiten und ihre Auswirkung auf die Ermittlung von Temperaturaltern. Thesis, Universität Innsbruck

  • Bertel E (1978b) Fission damage detection and investigation of the annealing behavior in apatite by absorption spectroscopy. Phys Rev B 17:4544–4548

    Google Scholar 

  • Bertel E, Märk TD, Pahl M (1980a) The interpretation of fission track annealing behavior in apatite and other minerals. Proc 10th Int Conf Solid State Nuclear Track Detectors, Lyon, 1979. Nucl Tracks, Suppl 2: 957–959

  • Bertel E, Märk TD, Pahl M (1980b) Investigation of the annealing behavior of fission track damage in apatite by absorption spectroscopy. Proc 10th Int Conf Solid State Nuclear Track Detectors, Lyon, 1979. Nucl Tracks, Suppl 2: 159–163

  • Bertel E, Ritter W, Bertagnolli E, Märk TD (1982) Fission damage induced color centers in apatite. Phys Rev B 27 (in press)

  • Burchart J, Butkiewicz T, Dakowski M, Galazka-Friedman J (1979) Fission track retention in minerals as a function of heating time during isothermal experiments: A discussion. Nucl Tracks 3:109–117

    Google Scholar 

  • Burchart J, Galazka-Friedman J, Kral J (1981) Experimental artefacts in fission track annealing curves. Nucl. Tracks 5:113–120

    Google Scholar 

  • Chaillou D, Chambaudet A (1981a) Isothermal plateau method for apatite fission track dating. Nucl Tracks 5:181–186

    Google Scholar 

  • Chaillou D, Chambaudet A, Zidler B (1981b) Sur la retention des traces de fission de l'uranium dans les minéraux. J Phys (Paris) 42:L343-L345

    Google Scholar 

  • Cukier RI, Hynes JT (1976) On exponential time decay in relaxation. J Chem Phys 64:2674–2683

    Google Scholar 

  • Dakowski M, Burchart J, Galazka J (1974) Experimental formula for the thermal fading of fission tracks in minerals and natural glasses. Bull Acad Pol Sci Ser Sci Terre 22:11–17

    Google Scholar 

  • Dartyge E, Duraud JP, Langevin Y, Maurette M (1981) New model of nuclear particle tracks in dielectric minerals. Phys Rev B 23:5213–5229

    Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids. Univ California Press, Berkeley

    Google Scholar 

  • Fletcher RC, Brown WL (1953) Annealing of bombardment damage in a diamond-type lattice: Theoretical. Phys Rev 92:585–590

    Google Scholar 

  • Galazka J, Burchart J (1977) Cumulative isothermal heating (CIH) as a method to correct thermally lowered fission track ages. I. Mathematical models. Bull Acad Pol Sci Ser Sci Terre 25:1–7

    Google Scholar 

  • Galazka-Friedman J, Burchart J (1977) Cumulative isothermal heating (CIH) as a method to correct thermally lowered fission track ages. II. Intensity of the thermal episode and time of its occurrence. Bull Acad Pol Sci Ser Sci Terre 25:57–65

    Google Scholar 

  • Gold R, Roberts JH, Ruddy FH (1981) Annealing phenomena in solid state track recorders. Nucl Tracks 5:253–264

    Google Scholar 

  • Märk E, Märk TD (1982a) Fission track temperature age theory. Proc 11th Intern Conf Solid State Nuclear Detection, Bristol, 1981. Nucl Tracks, Suppl 3:389–394

  • Märk E, Märk TD (1982b) Comments on the paper entitled ‘Fission track retention in minerals as a function of heating time during isothermal experiments” by Burchart et al. Nucl Tracks 5:325–328

    Google Scholar 

  • Märk E, Pahl M, Märk TD (1972) Fission track annealing behavior of apatite. Am Nucl Soc Trans 15:126–127

    Google Scholar 

  • Märk E, Pahl M, Purtscheller F, Märk TD (1973) Thermische Ausheilung von Uranspaltspuren in Apatiten, Alterskorrekturen und Beiträge zur Geothermochonologie. Tschermaks Mineral Petrogr Mitt 20:131–154

    Google Scholar 

  • Märk TD (1982) Ion induced track formation mechanism in apatite. Nucl Tracks, Suppl 3:381–384

    Google Scholar 

  • Märk TD, Vartanian R, Pahl M (1980) Interpretation of fission track annealing in sphene and fission track age-temperature relationship. Am Nucl Soc Tran 34:144–145

    Google Scholar 

  • Märk TD, Vartanian R, Purtscheller F, Pahl M (1981a) Fission track annealing and applications to the dating of Austrian sphene. Acta Phys Austriaca 53:45–59

    Google Scholar 

  • Märk TD, Pahl M, Vartanian R (1981b) Fission track annealing and fission track-temperature relationship in sphene. Nucl Technol 52:295–305

    Google Scholar 

  • Naeser CW (1979) Fission track dating and geological annealing of fission tracks. In: Jäger E, Hunziker JC (eds) Isotope geology. Springer, Berlin Heidelberg New York, pp 154–169

    Google Scholar 

  • Naeser CW, Faul H (1969) Fission-track annealing in apatite and sphene. J Geophys Res 74:705–710

    Google Scholar 

  • Naeser CW, Fleischer RC (1975) Age of the apatite at Cerro de Mercado, Mexico: a problem for fission track annealing corrections. Geophys Res Lett 2:67–70

    Google Scholar 

  • Provencher SW (1976a) A Fourier method for the analysis of exponential decay curves. Biophys J 16:27–41

    Google Scholar 

  • Provencher SW (1976b) An eigenfunction expansion method for the analysis of exponential decay curves. J Chem Phys 64:2772–2777

    Google Scholar 

  • Ritter W, Märk TD, Bertagnolli E (1982a) Absorption spectroscopy of fission track induced radiation damage in apatite. Proc 11th International Conference on Solid States Nuclear Track Detectors, Bristol, 1981. Nucl Tracks, Suppl 3:353–356

  • Ritter W, Märk TD (1982b) Diffusion to the surface in the annealing of radiation damage in inorganic insulating solids. In: Proc 3rd Symp Atomic Surface Physics, Maria Alm, Lindinger W, et al., (eds) 3:134–140

  • Ritter W, Märk TD (1982c) Absorption spectroscopy of the annealing of absorbing defects in natural fluorapatite. Rad Effects, (in press)

  • Saini HS, Nagpaul KK (1979) Annealing characteristic of fission tracks in minerals and their applications to earth sciences. Int J Appl Radiat Isot 30:213–231

    Google Scholar 

  • Seitz F, Koehler JS (1956) Displacement of atoms during irradiation. Solid State Phys 2:369

    Google Scholar 

  • Storzer D, Poupeau G (1973) Ages-plateaux de minéraux et verres par la méthode des traces de fission. CR Acad Sci Paris 276D:137–138

    Google Scholar 

  • Vartanian R (1975) Ausheilversuche, Alters- und Urangehaltsbestimmung an Apatit- und Titanitkristallen mit der Spaltspurenmethode. Thesis, Univ Innsbruck

  • Wagner GA (1979) Correction and interpretation of fission track ages In: Jäger E, Hunziker JC (eds) Isotope geology. Springer, Berlin Heidelberg New York, pp 170–177

    Google Scholar 

  • Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14:263–268

    Google Scholar 

  • Zimmerman RA, Gaines AM (1978) A new approach to the study of fission track fading. 4th Intern Conf Geochron Cosmochron Isotope Geology. US Geological Survey Yearbooks 78–701:467–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertel, E., Märk, T.D. Fission tracks in minerals: Annealing kinetics, track structure and age correction. Phys Chem Minerals 9, 197–204 (1983). https://doi.org/10.1007/BF00311955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311955

Keywords

Navigation