Skip to main content
Log in

Block copolymerization of alkoxyallenes with phenylallene by the living coordination system with π-allylnickel catalyst

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

The block copolymerization of alkoxyallenes (2a; n-octyloxyallene and 2b; n- butoxyallene) with phenylallene (3) was carried out by [(π-allyl)NiOCOCF3]2 (1) in toluene by the sequential addition of the two monomers. In spite of rather different polymerizability between 2 and 3 (i.e., 2 has ca. 70 times larger kinetic coefficient than 3), block copolymers having narrow molecular weight distributions were obtained successfully by controlling the reactivity of the propagating end with the additives such as triphenylphosphine (PPh3) and copper(I) iodide. In the case of the copolymerization of 3 with 2, the addition of PPh3 was effective for the control of the polymerization step of 2. The block copolymers with controlled segment length and narrow molecular weight distributions (Mw/Mn < 1.08) were obtained almost quantitatively. Conversely, when the copolymerization was started from 2, the control of the first stage required PPh3 as a ligand of the initiator which interrupt the second polymerization of 3. However, block copolymers with narrow molecular weight distributions (Mw/Mn < 1.03) were obtained simply by adding copper (I) iodide in the polymerization stage of 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. M. Morton, in Anionic Polymerization: Principles and Practice, Academic Press, New York, 1983.

    Google Scholar 

  2. R. N. Young, R. P. Quirk, and L. J. Fetters, Adv. Polym. Sci., 56, 1 (1984).

    Article  CAS  Google Scholar 

  3. M. Szwarc, Adv. Polym. Sci., 49, 1 (1983).

    Article  Google Scholar 

  4. S. Bywater, Prog. Polym. Sci., 4, 27 (1974).

    Article  Google Scholar 

  5. J. E. McGrath, ACS Symp. Ser., 166 (1981).

  6. R. P. Quirk, in Advances in Polymer Synthesis, B. M. Culberston and J. E. McGrath, Eds., Plenum Press, New York, 1985, p. 321.

    Google Scholar 

  7. S. Bywater, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. Kroschwitz, Ed., Wiley, New York, 1985, Vol. 2, p. 1.

    Google Scholar 

  8. M. Morton and L. J. Fetters, Rubber Chem. Technol., 48, 359 (1975).

    CAS  Google Scholar 

  9. E. J. Goethals, in Cationic Polymerization and Related Processes, Academic Press, New York, 1984.

    Google Scholar 

  10. A. Gandini and H. Cheradame, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. Kroschwitz, Ed., Wiley, New York, 1985, Vol. 2, p. 729.

    Google Scholar 

  11. P. Dreyfuss, in Polytetrahydrofuran, Gordonand Breach, New York, 1982.

    Google Scholar 

  12. S. Penczek, P. Kubisa, and K. Matyjaszewski, Adv. Polym. Sci., 68/69, 1 (1985).

    Article  Google Scholar 

  13. O. W. Webster, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. Kroschwitz, Ed., Wiley, New York, 1986, Vol. 7, p. 580.

    Google Scholar 

  14. H.-S. Yu, W.-J. Choi, K.-T. Lim, and S.-K. Choi, Maclomolecules, 21, 2894 (1988).

    Article  Google Scholar 

  15. K. Steinbrecht and F. Bandermann, Makromol. Chem., 190, 2183 (1989).

    Article  CAS  Google Scholar 

  16. D. Y. Sogah and O. W. Webster, Macromolecules, 20, 1473 (1987).

    Article  CAS  Google Scholar 

  17. D. Y. Sogah and O. W. Webster, Macromolecules, 19, 1775 (1986).

    Article  CAS  Google Scholar 

  18. W. Risse and R. H. Grubbs, Macromolecules, 22, 4462 (1989).

    Article  CAS  Google Scholar 

  19. W. Risse, D. R. Wheeler, J. F. Cannizzo, and R. H. Grubbs, Macromolecules, 33, 3205 (1989).

    Article  Google Scholar 

  20. T. Masuda, T. Yoshimura, and T. Higashimura, Macromolecules, 22, 3804 (1989).

    Article  CAS  Google Scholar 

  21. T. J. Deming and B. M. Novak, Macromolecules, 24, 6043 (1991).

    Article  CAS  Google Scholar 

  22. I. Tomita, Y. Kondo, K. Takagi, and T. Endo, Macromolecules, 27, 4413 (1994).

    Article  CAS  Google Scholar 

  23. idem, Acta Polymerica, 46, 432 (1995).

    Article  CAS  Google Scholar 

  24. Takagi, K.; Tomita, I.; Endo, T. Maclomolecules, in press.

  25. idem, Polym. Prepr. Jpn., 44, 1296 (1995).

    Google Scholar 

  26. K. Takagi, I. Tomita, and T. Endo, Tetrahedron, in press.

  27. K. Takagi, I. Tomita, and T. Endo, Chem. Lett., in press.

  28. I. Tomita, T. Abe, K. Takagi, and T. Endo, J. Polym. Sci.: Part A: Polym. Chem., 33, 2487 (1995).

    Article  CAS  Google Scholar 

  29. Since the polymerization of 2 by 1 gives the polymer having a little broader molecular weight distribution (Mw/Mn 1.3) in the absence of PPh3, the broadening of Mw/Mn of the block copolymer can be simply attributed to the character of the polymerization step of 2.

  30. S. Hoff, R. S. Brandsma, and J. K. Arens, Trav. Chim. Pays-Bas., 87, 916 (1968).

    CAS  Google Scholar 

  31. Y. A. Aggour, I. Tomita, and T. Endo, Makromol. Chem., 194, 3323 (1993).

    Article  CAS  Google Scholar 

  32. J.-L. Moreau and M. Gaudemar J. Organomet. Chem., 108, 159 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, K., Tomita, I. & Endo, T. Block copolymerization of alkoxyallenes with phenylallene by the living coordination system with π-allylnickel catalyst. Polymer Bulletin 39, 685–692 (1997). https://doi.org/10.1007/s002890050203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002890050203

Keywords

Navigation