Skip to main content
Log in

Cell type determines plastid transmission in tomato intergeneric somatic hybrids

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Mesophyll (M)- and suspension culture (S)-derived protoplasts of both Lycopersicon esculentum, tomato, and its wild relative Solanum lycopersicoides were fused as S+M, M+M and S+S combinations, respectively, to resolve the role of parental cell types in determining cpDNA transmission to intergeneric somatic hybrid plants. The mesophyll cpDNA was preferentially transmitted to 96% of the plants, each regenerated from a separate callus, in M+S and S+M fusion combinations. In contrast, for the M+M combination there was an equable distribution of either tomato cpDNA or that of S. lycopersicoides among the 34 hybrid plants. The number of plastids or proplastids in mesophyll or suspension protoplasts was not a factor regulating cpDNA transmission. Mesophyll or suspension protoplasts of both fusion partners had comparable frequencies of either plastid type with a mean of 23. The biased transmission of plastids from the mesophyll parent in somatic hybrid plants of S+M and M+S combinations appears to be due to differential multiplication of plastids, possibly conditioned by an unequal input of the nucleoids found in plastids versus proplastids. In the M+M fusion, plastid and nucleotid input and subsequent plastid multiplication are apparently equal, and when combined with random sorting out leads to an equal distribution of parental cpDNAs in the regenerated somatic hybrid plants. For the S+S combination, 22 somatic hybrid plants have exclusively tomato cpDNA, an outcome that is not readily explained by donor cell input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akada S, Hirai A (1983) Plant Sci Lett 32:95–100

    Google Scholar 

  • Butterfass T (1979) Patterns of chloroplast reproduction. Springer, Wien

    Google Scholar 

  • Chen K, Wildman SG, Smith HH (1977) Proc Natl Acad Sci USA 74:5109–5112

    Google Scholar 

  • Clark E, Schnabelrauch L, Hanson MR, Sink KC (1986) Theor Appl Genet 72:748–755

    Google Scholar 

  • Coleman AW (1984) Exp Cell Res 152:528–540

    Google Scholar 

  • Corriveau JL, Polans NO, Coleman AW (1989) Curr Genet 16:47–51

    Google Scholar 

  • Cseplo A, Nagy F, Maliga P (1984) Mol Gen Genet 198:7–11

    Google Scholar 

  • Flick CE, Kut SA, Bravo JE, Gleba YY, Evans DA (1985) Bio/ Technology 3:555–560

    Google Scholar 

  • Fluhr R, Aviv D, Galun E, Edelman M (1984) Theor Appl Genet 67:491–497

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) Dev Biol 33:130–137

    Google Scholar 

  • Gleba YY, Kolesnik NN, Meshkene IV, Cherep NN, Parokonny AS (1984) Theor Appl Genet 69:121–128

    Google Scholar 

  • Guri A, Sink KC (1988) Theor Appl Genet 76:490–496

    Google Scholar 

  • Handley LW, Sink KC (1985) Plant Sci 42:201–207

    Google Scholar 

  • Handley LW, Nickels RL, Cameron MW, Moore PP, Sink KC (1986) Theor Appl Genet 71:691–697

    Google Scholar 

  • Herrmann RG, Kowallik KV (1970) Protoplasma 68:365–372

    Google Scholar 

  • Levi A, Ridley BL, Sink KC (1988) Curr Genet 14:177–182

    Google Scholar 

  • James TW, Jope C (1978) J Cell Biol 79:623–630

    Google Scholar 

  • Kowallik KV, Herrmann RG (1972) J Cell Sci 11:357–377

    Google Scholar 

  • Kumar A, Cocking EC (1987) Am J Bot 74:1289–1303

    Google Scholar 

  • Kuroiwa TS, Suzuki T, Ogawa K, Kawano S (1981) Plant Cell Physiol 22:381–396

    Google Scholar 

  • Maniatis T, Fritzsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Miyamura S, Nagata T, Kuroiwa T (1986) Protoplasma 133:66–72

    Google Scholar 

  • Miyamura S, Kuroiwa T, Nagata T (1987) Protoplasma 141:149–159

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    Google Scholar 

  • Niedz RP, Rutter SM, Handley LW, Sink KC (1985) Plant Sci 39:199–204

    Google Scholar 

  • Palmer JD (1986) Methods Enzymol 118:167–186

    Google Scholar 

  • Pehu E, Karp A, Moore K, Steele S, Dunckley R, Jones MGK (1989) Theor Appl Genet 78:696–704

    Google Scholar 

  • Phillips AL (1985) Curr Genet 10:147–152

    Google Scholar 

  • Possingham JV (1980) Annu Rev Plant Physiol 31:113–129

    Google Scholar 

  • Possingham JV, Smith JW (1972) J Exp Bot 23:1050–1059

    Google Scholar 

  • Rogers SO, Bendich AJ (1988) Plant Mol Biol Manual A 6:1–10

    Google Scholar 

  • Rose RJ, Thomas MR, Filler JT (1990) Aust J Plant Physiol 17:303–321

    Google Scholar 

  • Scandalios JG (1969) Biochem Genet 3:37–39

    Google Scholar 

  • Scott NS, Tymms MJ, Possingham JV (1984) Planta 161:12–19

    Google Scholar 

  • Scowcroft WR, Larkin PJ (1981) Theor Appl Genet 60:179–184

    Google Scholar 

  • Thomas MR, Rose RJ (1983) Planta 158:329–338

    Google Scholar 

  • Yasuda T, Kuroiwa T, Nagata T (1988) Planta 174:235–241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. S. Levings III

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Sink, K.C. Cell type determines plastid transmission in tomato intergeneric somatic hybrids. Curr Genet 22, 167–171 (1992). https://doi.org/10.1007/BF00351478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351478

Key words

Navigation