Skip to main content
Log in

The C-terminal part of the CDC25 gene product has Ras-nucleotide exchange activity when present in a chimeric SDC25-CDC25 protein

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The CDC25 gene from S. cerevisiae encodes an activator of Ras proteins. The C-terminal part of a structurally-related protein encoded by the SDC25 gene is characterised by a Ras-guanine nucleotide exchange activity in vitro whereas the C-terminal part of CDC25 gives no detectable exchange activity. A chimera between the 3′ regions of these two genes was constructed by homeologous recombination. This chimeric gene suppresses cdc25 mutations. When expressed in E. coli, the chimeric product is detectable by antibodies directed against the carboxy-terminal CDC25 peptide and has an exchange-factor activity on the Ras2 protein. Therefore, the carboxy-terminal parts of both the CDC25 and the SDC25 gene products are structurally and functionally similar. The CDC25 part of the chimeric protein contains an intrinsic guanine exchange factor which does not require an additional cofactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbacid M (1987) Annu Rev Biochem 56:779–827

    Google Scholar 

  • Boy-Marcotte E, Damak F, Camonis J, Garreau H, Jacquet M (1989) Gene 77:21–30

    Google Scholar 

  • Broek D, Toda T, Michaeli T, Birchmeir B, Zoller M, Powers S, Wigler M (1987) Cell 48:789–800

    Google Scholar 

  • Camonis JH, Jacquet M (1988) Mol Cell Biol 8:2980–2983

    Google Scholar 

  • Camonis JH, Kalékine M, Gondré B, Garreau H, Boy-Marcotte E, Jacquet M (1986) EMBO J 5:375–380

    Google Scholar 

  • Camonis JH, Cassan M, Rousset JP (1990) Gene 8:263–268

    Google Scholar 

  • Carpenter ATC (1984) Cold Spring Harbor Symp Quant Biol 49:23–29

    Google Scholar 

  • Chant J, Corrado K, Pringle JR, Herskowitz I (1991) Cell 65:1213–1224

    Google Scholar 

  • Chu, Fasman (1978) Adv Enzymol 47:45–147

    Google Scholar 

  • Créchet JB, Poullet P, Camonis J, Jacquet M, Parmeggiani A (1990a) J Biol Chem 265:1563–1588

    Google Scholar 

  • Créchet JB, Poullet P, Mistou M, Parmeggiani A, Camonis J, Boy-Marcotte E, Damak F, Jacquet M (1990b) Science 248:866–868

    Google Scholar 

  • Damak F, Boy-Marcotte E, Le-Roscouet D, Guilbaud R, Jacquet M (1991) Mol Cell Biol 11:202–212

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast: 163–167

  • Hughes DA, Fukui Y, Yamamoto M (1990) Nature 344:355–357

    Google Scholar 

  • Jacquet M, Buhler JM, Iborra F, Francingues-Gaillard MC, Soustelle C (1991) Yeast 7:881–889

    Google Scholar 

  • Jones S, Vignais ML, Broach J (1991) Mol. Cell. Biol. 11:2641–2646

    Google Scholar 

  • Martegani E, Baroni MD, Frascotti G, Alberghina L (1986) EMBO J 5:2363–2369

    Google Scholar 

  • Martegani E, Vanoni M, Zippel R, Coccetti P, Brambilla R, Ferrari C, Sturani E, Alberghina L (1992) EMBO J 11:2151–2157

    Google Scholar 

  • Messing J, Gronenborg B, Müller-Hill B, Hofschneider PH (1977) Proc Natl Acad Sci USA 74:3642

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein J (1981) Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Petitjean A (1989) Thèse, Université libre de Bruxelles

  • Petitjean A, Hilger F, Tatchell K (1990) Genetics 124:797–806

    Google Scholar 

  • Pompon D, Nicolas A (1989) Gene 83:15–24

    Google Scholar 

  • Powers S, Gonzales E, Christensen T, Cubert J, Broek D (1991) Cell 65:1225–1231

    Google Scholar 

  • Sanger F, Nicklen S, Coulson A (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shou C, Farnsworth CL, Neel BG, Feig LA (1992). Nature 358:351–354

    Google Scholar 

  • Simon MA, Bowtell DDL, Dodson GS, Laverty TR, Rubin GM (1991) Cell 67:701–716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. P. Slonimski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boy-Marcotte, E., Buu, A., Soustelle, C. et al. The C-terminal part of the CDC25 gene product has Ras-nucleotide exchange activity when present in a chimeric SDC25-CDC25 protein. Curr Genet 23, 397–401 (1993). https://doi.org/10.1007/BF00312625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312625

Key words

Navigation